ORIGINAL RESEARCH ARTICLE | Nov. 22, 2022
Mechanical Performance of Steel Fiber Reinforced Geopolymer Concrete
Maddula Rama Manikantha, M. Sophia
Page no 252-255 |
10.36348/sjce.2022.v06i10.001
Concrete is used more than water worldwide. The need for Conventional concrete rises in tandem with the demand for concrete as a building material. According to estimates, cement production rose from 1.5 billion tons in 1995 to 4.5 billion tons in 2020. Finding a substitute for Cement concrete, whose production uses the most resources, is therefore inevitable. Researchers have been inspired to create an alternative binder paste to totally replace cement paste by the use of supplemental cementing ingredients such fly ash, silica fume, granulated blast furnace slag, and rice-husk ash. These inorganic amorphous binders will chemically react to form geo polymer concrete, a cutting-edge building material. We use additional cementitious materials in this that react with alkaline activators to create an Al-O-Si-O gel that has a comparable bonding strength to C-S-H gel. Because geopolymer concrete is already somewhat brittle, increasing its flexural and tensile strength is necessary. There are fibres included. In this study, the mechanical properties of geopolymer [M50] concrete with steel fibres were examined by curing it in an ambient condition.