REVIEW ARTICLE | Jan. 10, 2022
A BIM Approach for the Design of Industrial Warehouses
Rassidatou Abbo, Okpwe Mbarga Richard, Lezin Seba Minsili, Mbondo Jean Marc
Page no 1-8 |
10.36348/sjce.2022.v06i01.001
All around the world, the Building Information Modeling (BIM) is transforming the architecture of engineering design and of construction industry. While it is in an early implementation stage in African Sub-saharan Countries, many construction regulators and project owners are beginning to enforce the BIM application from the project design stage to its commissioning. The aim of this research work is to provide an approach for designing industrial warehouses using BIM as it was done in the industrial zone of the Kribi Deep Sea port in Cameroon. The proposed methodology is presented in six steps: definition of BIM general requirements, design of the 3D BIM architectural model, sizing of wall and roof for specific requirements, design of the 3D BIM structural model, coordination of 3D BIM models and interference detection and creation of 4D BIM model. Results obtained from the application of BIM on the design of a warehouse, dedicated to preserve the natural and biological essence of cocoa and coffee products in a hostile marine environment, show that this methodology is easily appropriated and implemented by local design and construction engineers through available engineering software in the local market.
ORIGINAL RESEARCH ARTICLE | Jan. 12, 2022
Compressive Strength Determination of Granite Dust-Sandcrete
Ihemegbulem Ezekiel O, Njoku Kelechi O, Nwokorobia Godfrey C, Ikpa Patience N
Page no 9-13 |
10.36348/sjce.2022.v06i01.002
This study entails the research data of the empirical study carried out on the compressive strength determination of Granite dust-Sandcrete with granite dust as partial replacement of three (3) grades of river sand with fineness modulus (fm) of 2.29, 2.44 and 2.89. The percentage replacements range from 0%, 10%, 20%, 30%, 40%, 50% to 100%. A gross number of 102 cubes of 150 × 150 × 150mm square metallic mould were blend, mixed and cast with a mix ratio of 1:5. Three (3) cubes were blend, mixed and cast for each percentage partial replacement and a total 34 cubes for each grade of river sand, were crushed to derive the compression strength of 28th day curing respectively. For river sand with fineness modulus of 2.29, the highest strength was recorded on 80% replacement, while the least strength was recorded on 0% replacement. For the same river sand, compressive strength increased from 0% to 80% and assumed a descending trend from 80% to 100%. For 2.44 fineness modulus, the highest strength was recorded on 80% replacement, while the least strength was recorded on 0% replacement. Also, for the same river sand, compressive strength increased from 0% to 80% and assumed a descending trend from 80% to 100%. For river sand of 2.89 fineness modulus, the highest strength was recorded on 70% replacement, while the least strength was recorded on 0% replacement. Also, compressive strength increased from 0% to 70% and assumed a descending trend from 70% to 100%. Generally, the compressive strength assumed an upward trend as the percentage replacement increases.