Saudi Journal of Biomedical Research (SJBR)
Volume-9 | Issue-01 | 1-7
Original Research Article
Feature Extraction and Classification Analysis of High-Dimensional Biological Data Based on Dimensionality Reduction Fusion Method
Yankun Li, Yulong Liu, Ziyu Shang, Zhiyu Zheng, Mengting Ran, Zhimin Wang
Published : Jan. 3, 2024
Abstract
Identification and extraction of characterized information from complex high-dimensional biological data is a very meaningful issue. The dimensionality reduction fusion method based on random forest, feature extraction and neural network is proposed to recognize and classify two datasets of mRNA and lncRNA. It is shown that the proposed fusion method achieved accurate identification/classification of cancer and non-cancer groups, and simultaneously selected identity variables that have biological relevance to lung cancer (tumor) as potential biomarkers from a large number of variables. It is considered as an effective tool and theoretical support for lung cancer identification in clinical application, and it can be extended to other kinds of cancer or biological data. Ultimately, an advanced method for feature extraction and classification analysis of high-dimensional data is provided.