

Conservative Management of Oral Hemangioma Using Boiled Saline: A Case Report with Review of Literature

Mokhtar Mamdouh Abdel-Latif¹, Fareedi Mukram Ali^{2*}, Ahmed Yahya Ibrahim Fageh³, Ali Yahia Rajhi⁴, Ali Yahia Kaabi⁵, Mohammed Abdu Basher⁶, Shaker Mohammed Q Hakami⁷

¹Professor of Oral & Maxillofacial Surgery, Faculty of Dentistry, October University for Modern Sciences & Arts, (MSA University) Egypt

²Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia

³⁻⁶Dental Intern, College of Dentistry, Jazan University, Jazan, Saudi Arabia

⁷General Dental Practitioner, Rakhaa Polyclinic, Jazan City

DOI: <https://doi.org/10.36348/sjodr.2026.v1i101.001>

| Received: 10.11.2025 | Accepted: 15.01.2026 | Published: 15.01.2026

*Corresponding author: Fareedi Mukram Ali

Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia

Abstract

Hemangiomas are common tumors that exhibit microscopic blood vessel proliferation. Congenital hemangiomas frequently present from birth and may become increasingly noticeable over time. Their origin is most likely developmental rather than malignant. This report describes a 6-year-old girl's gingival hemangioma and the way a sclerosing agent was used to treat it. The aim of this case report is to demonstrate the therapeutic benefits of boiled saline as a sclerotherapy for oral hemangiomas. Boiled saline is a safe and effective sclerosing therapy for oral hemangiomas. This method provided our patient with significant symptom relief at a minimal cost with few complications.

Keywords: Boiled Saline, Hemangioma, Injection.

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Congenital lesions with aberrant vascular development are known as vascular abnormalities. Vascular abnormalities, formerly known as vascular birthmarks, are now categorized based on the system formulated by Mulliken and Glowacki in 1982 using a method created that takes into account these entities: histology, biological behavior, and clinical presentation [1].

Hemangiomas are benign blood vessel abnormalities that fall under the category of vascular malformations. These tumors are actively growing and have a distinctive pattern of rapid postnatal development followed by slow involution. They frequently occur in the head and neck areas. The lips, tongue, buccal mucosa, gums, and palate are among the affected areas. Preterm newborns, twins, and females have a higher prevalence (65%) [2, 3]. They range in size from millimeters to centimeters and are typically asymptomatic. The degree of vascular congestion in the affected area, as well as the location and depth of tissue invasion, determine the color, which ranges from red to

purple [2, 3]. It may appear as a flat or elevated lesion with a smooth or nodular surface, well-defined margins, sessile or pedunculated, with a palpably soft consistency [2].

History, clinical characteristics, diascopy, aspiration of the lesion, and imaging studies are used to make the diagnosis [4]. Histopathology analysis reveals that they have numerous blood vessels, a thicker subendothelial basement membrane, and hyperplastic endothelial cells [5, 6].

The hemodynamics of the lesion—whether it has high flow or low flow—are taken into consideration when planning treatment [4]. Surgical excision, laser surgery, cryotherapy, chemotherapeutic drugs, corticosteroids, B Blocker drugs taken orally or topically, embolization, and sclerotherapy are among the available treatment options [6, 7].

Sclerosing agents are inexpensive, readily available, and have a high response rate. Nonetheless, a number of sclerosing drugs have been effectively

Citation: Mokhtar Mamdouh Abdel-Latif, Fareedi Mukram Ali, Ahmed Yahya Ibrahim Fageh, Ali Yahia Rajhi, Ali Yahia Kaabi, Mohammed Abdu Basher, Shaker Mohammed Q Hakami (2026). Conservative Management of Oral Hemangioma Using Boiled Saline: A Case Report with Review of Literature. *Saudi J Oral Dent Res*, 11(1): 1-6.

employed to treat these lesions, including ethanol, boiling contrast media, sodium morrhuate, sodium tetradeethyl sulphate (STS), and bleomycin [8].

When the treatment with boiling saline as the sclerosing agent is used, the heat from the boiling saline dehydrates the red blood cells and endothelium, resulting in necrosis-induced obliteration of the vessel lumen. This increases blood coagulation and vascular death [9, 10,11]. It is also easily accessible, affordable, hypoallergenic, and acceptable to patients because it is not a chemical.

The aim of this paper was to present a simple non-surgical alternative treatment for hemangiomas with boiling saline.

CASE REPORT

A 32-years-old female patient presented at the College of Dentistry, Jazan (KSA) oral surgery clinics with a red, purplish lesion on the right attached gingiva below her right lateral incisor and canine. The chief complaint was dark color on her gingiva. The lesion was there for about 2 years, painless, there used to be a slight increase in size then it would return back again (Figure 1). There was no gingival bleeding while she brushed. There were no significant findings from the patient's medical history. There was no lymphadenopathy.

Examining the mandibular right attached gingiva in regard to the lateral incisors and canine revealed an uneven, non- stemmed, painless, bluish

purple maculopapular lesion that was around 3 x 5 mm. When pressure was applied, the lesion blanched, no pulsations were present. Palpation did not reveal any tenderness. Diascopy examination showed vascular lesions. A vascular malformation was strongly suggested by these clinical findings. There was no radiolucent area in the lateral incisor and canine teeth's periapical region, according to a diagnostic panoramic radiograph.

Conservative treatment with an injection of boiling saline was recommended for the patient. Written informed consent was acquired from the patient after she was briefed about the surgery and potential complications. Following a buccal infiltration with 2% lidocaine and 100,000 epinephrine, Saline was heated to 100°C and then placed to a 3-cc syringe. To make sure the needle had penetrated the depth of the vascular lesion, aspiration was performed before injection. The patient had an injection of 3 cc of boiling saline. The injection was administered carefully and immediately afterward. The injection site was compressed with gauze until the bleeding ceased (Figure 2). Following sclerotherapy with boiling saline, antibiotics and analgesics were given along with ice-pack applications.

After three weeks, the patient was called back. At the recall appointment, the same process was carried out again (Figure 3) and given postoperative instructions. The hemangioma lesions' surface area decreased as a result of the weekly evaluations after fifth week (Figure 4). No hemangioma lesions (Figure 5) showed up on the attached gingiva after seventh week following the third stage of boiling water injection.

Figure 1: Clinical photograph of Hemangioma when first presented on the right attached gingiva

Figure 2: Clinical photograph immediately after injection with boiling saline

Figure 3: 3 weeks post-operatively

Figure 4: 5 weeks post-operatively

Figure 5: 7 weeks post-operatively, showing complete remission of the lesion

DISCUSSION

The head and neck area accounts for up to 50% of vascular lesions [12]. Arteriovenous malformations (AVMs), which account for roughly 1.5% of all recorded cases, are the least prevalent tumors among infants, while hemangiomas are the most common [13]. Clinically and biologically, hemangiomas and vascular malformations differ from one another. While AVMs are

abnormal connections between ectatic arteries and veins without an intervening capillary bed, hemangiomas are benign tumors in infants that are defined by abnormal proliferation of endothelial cells and blood vessels [14].

Vascular abnormalities are categorized using a system developed by Mulliken and Glowacki in 1982 that takes these entities' histology, biological behavior, and clinical appearance into account [1].

Table 1: Classification of vascular anomalies [1]

Vascular tumors	Vascular malformations
Infantile hemangioma	Slow-flow
Congenital hemangioma	Capillary malformations
Tufted angioma	Venous malformations
Kaposiform hemangioendothelioma	Lymphatic malformations
Infantile hemangioma	Fast-flow
	Arteriovenous malformations

Table 2: Difference between Hemangioma and Vascular malformation

Hemangioma	Vascular malformation
May or may not be present at birth	Always present at birth
True benign neoplasm of endothelial cells	Localized defects of vascular architecture that results in formation of abnormal tortuous and enlarged vascular channel
Females are more commonly affected	No gender predilection
Also known as port-wine stain, strawberry hemangioma, and salmon patch	Also known as lymphangiomas, Arteriovenous malformation.
Grows faster often faster than the child's growth	Enlarges proportionately with growth of the child
They involute over time	They do not involute, in fact becomes more apparent with child's growth
Mast cells increase during proliferating phase	No increase in mast cells

The term "hemangioma" describes a variety of vascular development defects, including diseases brought on by these anomalies [15]. The Greek terms "haema" (blood), "angio" (vessel), and "oma" (tumor) make up the name. In the head and neck region, hemangiomas are frequently found [16]. The lips, tongue, and buccal mucosa are frequently the sites of oral hemangiomas [15, 17].

The most prevalent benign vascular tumors of infancy, hemangiomas, can affect up to 10% of newborns [18]. They often appear soon after birth, and they grow rapidly in the early stages of infancy before gradually involution [19, 20]. While most of these tumors are not medically relevant, they can invade important structures, bleed, ulcerate, infect, or result in significant structural abnormalities [19, 21]. Rarely, underlying congenital abnormalities may be linked to hemangiomas.

Complications from hemangiomas might include ulceration or infection [21].

Hemangiomas are rare in people with dark skin colors, more common in white infants, and more common in females than in males [22]. Premature babies are more at risk, and birth weight is a direct contributing factor [23].

Hemangioma is diagnosed based on clinical symptoms that are supported by additional examinations. Imaging procedures are used to differentiate blood vessel abnormalities from a number of aggressive neoplastic processes. Doppler ultrasonography (USG) is non-invasive and can provide images of increased blood flow that indicate hemangiomas, it is a useful technique. It can

therefore identify locations of feeding vessels and differentiate hemangiomas from solid tumors [15, 17].

Treatment options for hemangiomas include surgery, corticosteroid therapy, sclerotherapy or radiation [24]. When treating hemangiomas, surgery is typically not the first option [15].

Sclerosant ingredients are injected into the lesion to carry out sclerotherapy. Sodium morrhuate, hot water, nitrogen mustard, and sodium tetradecyl sulfate are examples of sclerosant materials that are frequently used to treat symptomatic hemangiomas and embolize high-flow vascular malformations [25].

Three categories of sclerosing agents have been classified according to the mechanism of action that results in endothelium damage [26].

Table 3: Classification of Sclerosing agents according to the mechanism of action that results in endothelium damage

Categories	Sclerosing agents	Action
Detergents	Polidocanol, STS, sodium morrhuate, and ethanolamine Oleate	The detergents cause injury by altering the surface tension surrounding endothelial cells.
Osmotic Agents	Hypertonic saline, hypertonic saline/dextrose	They act through endothelial damage through dehydration.
Chemical irritants	Chromated glycerin, poly-iodinated iodide	Act by a cauterizing action and those which injure cells by a heavy metal effect.

The sclerosing agent utilized in the current cases was boiling saline. The heat from the boiling saline dehydrates the red blood cells and endothelium, resulting in necrosis-induced obliteration of the vessel lumen, which increases blood coagulation and vascular death [9, 10, 11],

Prasetya DA treated hemangiomas with a combination of boiling water injection and corticosteroid administration, which had good results [17]. Arora GK case report describes the treatment of a 13-year-old boy with a symptomatic tongue hemangioma at a peripheral government hospital in India using frequent injections of 3% boiling saline, highlighting the effectiveness and practicality of the therapy in a setting with limited resources [27].

A prospective study (Al-Alwan) which included 30 cases of hemangioma treated with injection of sclerosing agent like alcohol, steroid, hot water. They assessed most of the patients injected with alcohol and boiling saline materials complained from edema. They suggested a preoperative dexamethasone injection and ice pack application would be beneficial to the patients [28]. Whereas a study by Mishra S comparing intralesional 3% sodium Tetradecyl Sulphate versus hot water in oral cavity hemangioma found 3% sodium tetradecyl sulphate is a better sclerosing agent than hot water in cases of oral cavity hemangiomas [29].

Some possible side effects of sclerotherapy include hemorrhage, allergy, ulcerations, edema, infection, and temporary nerve damage [11].

CONCLUSION

It has been found that conservative treatment in the form of sclerotherapy with boiling saline is a cheap, easily accessible outpatient procedure. Boiling saline is a safe, efficient, and affordable method of treating oral hemangiomas. To minimize unnecessary risks and complexities, however, thorough planning, assessment, and case selection are required.

REFERENCES

1. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plastic and Reconstructive Surgery. 1982; 69(3):412-422. doi: 10.1097/00006534-198203000-00002.
2. Jeyraj P, Chakranarayana A. Management of vascular malformations of maxillofacial region using sclerotherapy and sclerotherapy and sclerotherapy. Acta Scient Dent Sci. 2017; 1(3):10-8.
3. Hazarika P, Nayak DR, Balakrishnan R. Textbook of ear, nose, throat and head and neck surgery. 2nd ed. India: CBS Press; 2009.
4. Mishra S, Acharya S, Kar A, Mohanta FM, Samal SR. Intralesional 3% sodium tetradecyl sulphate versus hot water in oral cavity hemangioma: a

comparative study. *Int J Otorhinolaryngol Head Neck Surg* 2021; 7:1768-71.

5. Hazarika P, Nayak DR, Balakrishnan R. Textbook of ear, nose, throat and head and neck surgery. 2nd ed. India: CBS Press; 2009.
6. Gleeson M. Scott-Brown's Otorhinolaryngology, head and neck surgery. 7th ed. Great Britain: Hodder Arnold; 2008.
7. Panditray S, Acharya S. Management of head and neck hemangiomas in adults; oral propranolol versus oral itraconazole in conjunction with injection sodium tetradecyl sulphate. *Indian J Otolaryngol Head Neck Surg*. 2019; 71(1):566-73.
8. Trivedi K, Soni A, Meshack R, Kulthya RS. Intraoral Hemangioma: An overview of the clinical entity. *J Int Clin Dent Res Organ* 2015; 7:79-81.
9. Eltohami YI, Abuaffan AH. Venous Malformation Case Report. *J Hosp Med Manage*. 2016; 2:2.
10. Wiegand S, Eivazi B, Zimmermann AP, Sesterhenn AM, Werner JA. Sclerotherapy of lymphangiomas of the head and neck. *Head Neck*. 2011; 33:1649–1655. doi: 10.1002/hed.21552.
11. Dietzek CL. Sclerotherapy: Introduction to Solutions and Techniques. *Perspectives in Vascular Surgery and Endovascular Therapy*. 2007; 19(3):317-324.
12. Kennedy KS. Arteriovenous malformation of the maxilla. *Head & neck*. 1990 Nov; 12(6):512-5.
13. Kohout MP, Hansen M, Pribaz JJ, Mulliken JB. Arteriovenous malformations of the head and neck: natural history and management. *Plastic and reconstructive surgery*. 1998; 102(3):643-54.
14. Zhou Q, Yang XJ, Zheng JW, Wang YA. Hemangioma concurrent with arteriovenous malformation in oral and maxillofacial region: report of a case and review of the literature. *J Oral Maxillofac Surg*. 2011; 69(4):1100-2. doi: 10.1016/j.joms.2010.02.036.
15. Richter GT, Friedman AB. Hemangiomas and vascular malformations: current theory and management. *Int J Pediatr* 2012; 2012: 1-10.
16. Pinto A, Haberland CM, Baker S. Pediatric soft tissue oral lesions. *Dent Clin North America* 2014; 58: 437-453.
17. Prasetya DA, Goreti M, Hasan CY. 2021. Boiling water injection as a non-surgical alternative treatment in hemangiomas. *Journal of Dentomaxillofacial Science* 6(2): 128-131. DOI: 10.15562/jdmfs. v6i2.931.
18. Bauland CG, Smit JM, Ketelaars R, Rieu PN, Spaewen PH. Management of haemangiomas of infancy: a retrospective analysis and a treatment protocol. *Scand J Plast Reconstr Surg Hand Surg*. 2008; 42(2):86-91.
19. Chang CS, Wong A, Rohde CH, Ascherman JA, Wu JK. Management of lip hemangiomas: Minimizing peri-oral scars. *J Plast Reconstr Aesthet Surg*. 2012; 65(2):163-8.
20. Lauren C, Garzon MC. Treatment of infantile hemangiomas. *Pediatr Ann*. 2012; 41(8):1-7. doi: 10.3928/00904481-20120727-10.
21. Smolinski KN, Yan AC. Hemangiomas of infancy: clinical and biological characteristics. *Clin Pediatr (Phila)*. 2005; 44(9):747-66.
22. Hiraoka K, Mota De Queiroz A, Aparecida Marinho S, Costa Pereira AA, Costa Hanemann JA. Sclerotherapy with monoethanolamine oleate in benign oral vascular lesions. *Minerva Stomatol*. 2012; 61(1-2):31-6.
23. Fathallah ZF. Injection of boiling hypertonic saline in the treatment of cutaneous haemangioma. *Bas J Surg* 2016; 22: 31-37.
24. Kobayashi K, Nakao K, Kashishita S, et al. Vascular malformations of the head and neck. *Auris Nasus Larynx* 2012; 40: 89-92.
25. Srivathsan SH. Sclerotherapy for hemangioma of the labial mucosa. *Indian J Paediatr Dermatol* 2016; 17: 53-55.
26. Rotter SM, Weiss RA. Human saphenous vein *in vitro* model for studying the action of sclerosing solutions *J Dermatol Surg Oncol*. 1993; 19:59–62.
27. Arora GK, Mishra U, Lohchab P, Singh H. Effective Management of Tongue Hemangioma Using Boiling 3% Hypertonic Saline Injections: A Case Report from a Resource-Limited Setting. *Indian J Otolaryngol Head Neck Surg*. 2025; 77(8):3144-3146. doi: 10.1007/s12070-025-05585-3.
28. Alwan AA. The Outcome of Management of Hemangioma. *Pakistan Journal of Medical and Health Sciences*. 2020; 14(2):717-18.
29. Mishra S, Acharya S, Kar A, Mohanta FM, Samal SR. Intralesional 3% sodium tetradecyl sulphate versus hot water in oral cavity hemangioma: a comparative study. *Int J Otorhinolaryngol Head Neck Surg* 2021; 7:1768-71.