Detection of Sodium Channel SCN1A Gene Mutations among Patients with Epilepsy

Sanaa Abdalaziz Mohamed1,2*, Sawsan A.H. Aldeaf2, Rasha Elhassan4, Abassah Hussein4, Alsadig Gassoum2,3, AbdElKarim A. Abdrabo1

1Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, Al-Neelain University, Sudan
2National Center of Neurological Science, Sudan
3Almadain College for Medical science and Technology, Khartoum, Sudan
4University of Khartoum, Faculty of Medicine, Department of Medicine, Khartoum, Sudan

Abstract

Epilepsy is one of the most common neurological disorders, nearly 70% of patients with epilepsy lack an obvious pathogenetic cause, genetic is believed to play an important role in its causation. Objectives: to determine the association of sodium channel SCN1A gene mutation with epilepsy. Methods: The current study is a cross-sectional study that had been performed at Sheikh Mohamed Khair centre, Banat, Omdurman, and National Centre for Neurological Sciences (NCNS) Khartoum state, during the period November 2016 to February 2019. Ninety-nine patients were enrolled in this study. Demographic data were collected in a predesigned questionnaire. Blood samples were tested for biochemical and molecular tests. Results: sequencing analysis detected AT deletion in 71% of the samples. Conclusion: Genetic mutations have an effective role in developing epilepsy, AT deletion in SCN1A gene, indirectly, affects Gamma aminobutyric acid function which is inhibition of neuronal activity.

Keywords: Sodium Channel SCN1A, Gene Mutations, Epilepsy.
were collected in predesigned questionnaire. The demographic and clinical data relating to each patient were registered (age, gender, family history, class of seizure, onset of seizure).

Biochemical analysis
Blood Serum was obtained by centrifugation technique (using Hettich Zentrefuge EBA200, Kirchlengern, Germany) at 3,000 rounds per minute for 5 minutes and then stored at -20°C. Na and K results were detected by Easylyte (Na/K full automated analyzer).

Molecular Genetic Analysis
Deoxyribonucleic acid (DNA) was extracted from whole blood via QIAGEN® DNA extraction kits (vacuum procedure). In PCR tube, 2 μl of DNA were added to 20μl of readymade MM (4 μL of 5× Firepol® Master Mix, 14 μL distilled water, 1 μL forward primer and 1 μL reverse primer) For polymerase chain reaction.

Scn1a primers used for amplification were 5’ TACCCTGTCCAGTGCAG 3’ forward primer and 5’ GCTGTGCGCAAGGTCTCA 3’ reverse primer, then the amplified PCR products were separated using 2% gel electrophoresis, after that, separated DNA was visualized using UV light.

DNA sequencing
Polymerase chain reaction products were transferred to china for sequencing at BGI solutions co. ltd.

DATA ANALYSIS
Statistical Analysis
Analyses was done using Microsoft Office Excel and Statistical Package for Social Science Program 2010 SPSS version 25).

Sequencing analysis
Bioinformatics tools were used to analyze sequencing results.

RESULTS

Table-1: The frequency distribution of demographic data

<table>
<thead>
<tr>
<th>Age</th>
<th>Count</th>
<th>Column N %</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 65</td>
<td>2</td>
<td>2.0%</td>
<td>.000</td>
</tr>
<tr>
<td>Less than 18</td>
<td>32</td>
<td>32.0%</td>
<td></td>
</tr>
<tr>
<td>18-40</td>
<td>55</td>
<td>55.0%</td>
<td></td>
</tr>
<tr>
<td>41-65</td>
<td>11</td>
<td>11.0%</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>53</td>
<td>53.0%</td>
<td>.549</td>
</tr>
<tr>
<td>Male</td>
<td>47</td>
<td>47.0%</td>
<td></td>
</tr>
<tr>
<td>Onset of seizure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 5 yr</td>
<td>50</td>
<td>50.0%</td>
<td>.001</td>
</tr>
<tr>
<td>More than 10 yr</td>
<td>22</td>
<td>22.0%</td>
<td></td>
</tr>
<tr>
<td>5-10 yr</td>
<td>28</td>
<td>28.0%</td>
<td></td>
</tr>
<tr>
<td>Class of seizure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal</td>
<td>4</td>
<td>4.0%</td>
<td>.000</td>
</tr>
<tr>
<td>Focal to bilateral</td>
<td>26</td>
<td>26.0%</td>
<td></td>
</tr>
<tr>
<td>Focal with impairment</td>
<td>2</td>
<td>2.0%</td>
<td></td>
</tr>
<tr>
<td>Generalize</td>
<td>68</td>
<td>68.0%</td>
<td></td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>90</td>
<td>90.0%</td>
<td>.000</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>10.0%</td>
<td></td>
</tr>
</tbody>
</table>

Table-2: Descriptive statistics (Mean±S) of biochemicals

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Normal</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>134.82</td>
<td>7.95</td>
<td>135 – 145</td>
<td>Normal</td>
</tr>
<tr>
<td>K</td>
<td>3.65</td>
<td>.40</td>
<td>3.5 – 5</td>
<td>Normal</td>
</tr>
</tbody>
</table>

DEMOGRAPHIC RESULTS
100 subjects were recruited in this study, (47% males and 53% females) with epilepsy. Patients aged between 18-40 years old were the highest category with a 55%, followed by less than 18 years (32%), 41-65 yrs (11%) and more than 65 yrs were only 2%. Onset of seizure was less than 5 yrs were 50% of the patients, 5-10 yrs 28% and more than 10 yrs were 22%. 90% of the patients have a Family history with epilepsy while the rest of them (10%) have it.

Generalize epilepsy presented in 68%, focal to bilateral in 26% and focal in 6 patients two of them (2%) developed impairment (Table 1).

Biochemical results
Serum Sodium and potassium analysis showed normal results, mean 134.82 mg/dl, 3.65 mmol/l, respectively (Table 2).

Molecular results
All the patients were tested positive for scn1a gene.
Sequencing results

The sequencing findings of SCN1A gene showed that, C>G (chr2:166848853) was detected in 57% of the samples and C>T in 14%, with splice site effect. Also AT> deletion with frame shift mutation (chr2:166848848) was appeared in 71% of the samples with splice site effect.

DISCUSSION

Epilepsy is a most common serious neurological disorder and is one of the world's most prevalent non-communicable diseases. Idiopathic (genetic) generalized epilepsies (IGEs) are common epilepsy syndromes.

Regarding onset of epilepsy, this study showed that 50% of the patients had their onset of the disease at an age less than 5 years old. Though there is increasing evidence for the existence of IGE beginning beyond the third decade [10]. Ali A. Asadi’s study only 15.2% were four years and under at the time of the onset of their disease [11].

In this study, Females outnumbered males (53% females, 47% males), similar findings were in Ali A. Asadi study (females (57%), (43%) were males.

Brain, among many other human tissues and organs, may be influenced by electrolyte disturbances. Seizures are often seen in patients with sodium disorders, especially, hypocalcemia, hyponatremia, and hypomagnesemia [12]. numerous reports suggested that the body electrolytes (sodium (na +), potassium (k +) and calcium (ca 2+) play a vital role in seizure condition to develop [13, 14], patient in the present study had sodium and potassium levels in the normal ranges this might be because samples were collected when patients were in stable status as most of them were already under treatment.

SCN1A is the most clinically relevant gene for a large spectrum of epilepsy phenotypes and the search for a mutation in the SCN1A gene is the first widely accepted step in DNA diagnosis of patients assumed to have idiopathic epilepsy.

Sequencing results showed that 71% of the sequenced samples had AT deletion chr2:166848848_166848849 resulting in amino acid substitution Isoleucine 1646 Proline. At the same exon (exon 26) Analysis in patients with GEFS+2 identified a nucleotide substitution, G4943A, that results in the amino acid substitution Arg1648His [15].

A substantial body of clinical data supports that high CNS L-proline may cause neuronal dysfunction by interfering with native neurotransmitter systems [16]. In this regard, it was noted that the chemical formation of L-proline strongly resembles that of GABA, signifying pathological levels of L-proline might specifically disrupt normal GABA-ergic function [17]. Lproline is a GABA-analogue; it causes a competitive inhibition of glutamic acid decarboxylase (GAD) by its accumulation in the cytosol of GABA-ergic neurons, leading to deficient γ-Aminobutyric acid (GABA) production [17]. GABA is recognized as the main inhibitory neurotransmitter in the cerebral cortex [18]. It maintains the inhibitory manner that counterbalances neuronal excitation. When there is defect in this balance, seizures may arise.

CONCLUSION

Genetic mutations have an effective role in developing epilepsy, AT deletion in sc1a gene, indirectly, affects Gamma aminobutyric acid function which is inhibition of neuronal activity.

REFERENCES