

The Glycemic Cycle and Its Interpretation: An Essential Tool Despite Technological Advances

F. Aziouaz^{1*}, M. Benkacem¹

¹Endocrinology, Diabetology and Metabolic Diseases Department, University Hospital of Tangier, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Morocco

DOI: <https://doi.org/10.36348/sjm.2025.v10i12.006>

| Received: 28.10.2025 | Accepted: 22.12.2025 | Published: 24.12.2025

*Corresponding Author: F. Aziouaz

Endocrinology, Diabetology and Metabolic Diseases Department, University Hospital of Tangier, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Morocco

Abstract

Background: Glycemic control remains a cornerstone of diabetes management. However, glycemic values are often interpreted in isolation, without sufficient consideration of their daily variability and clinical context. The concept of the glycemic cycle provides a dynamic and patient-centered framework for understanding glycemic fluctuations beyond static measurements. **Objective:** This review aims to highlight the clinical relevance of the glycemic cycle and to emphasize the importance of its proper interpretation in contemporary diabetes care, particularly in the context of evolving glucose monitoring technologies. **Methods:** We provide a narrative synthesis of current evidence and international recommendations regarding glycemic cycle monitoring, including capillary blood glucose measurements and continuous glucose monitoring systems. Key aspects addressed include clinical indications, practical implementation, and interpretative principles. **Results:** Glycemic cycle monitoring enables a comprehensive assessment of daily glycemic variability, complementing glycated hemoglobin in the evaluation of metabolic control. Interpretation of glycemic cycle data requires individualized glycemic targets, an understanding of pharmacological profiles, and the use of standardized metrics such as time in range and glycemic variability. Continuous glucose monitoring further enhances clinical decision-making through dynamic data and trend analysis. **Conclusion:** Despite rapid technological advances in glucose monitoring, rigorous interpretation of the glycemic cycle remains essential for optimizing diabetes management. Integrating glycemic cycle analysis into routine practice supports personalized therapeutic adjustments, limits therapeutic inertia, and enhances patient engagement, ultimately contributing to safer and more effective diabetes care.

Keywords: Glycemic Cycle, Diabetes Management, Isolation, Glycemic Fluctuations, Glucose.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

The glycemic cycle represents a fundamental component of diabetes management. The notion of achieving “normal” glycemic values is frequently misinterpreted, as glucose levels also fluctuate in individuals without diabetes, particularly following meals or physical activity. Consequently, glycemic values must always be interpreted within their specific clinical and contextual framework rather than as absolute targets [1].

Glycemic targets should therefore be individualized according to each patient’s characteristics and therapeutic objectives. Glycemic monitoring provides a valuable approximation of the glycemic cycle, although it does not fully replicate it. Nevertheless, it allows early identification of glycemic imbalances,

thereby facilitating timely lifestyle or therapeutic interventions and reducing the risk of complications [2,3].

Proper interpretation of the glycemic cycle is essential to promote overall health and well-being. It enables patients to make informed decisions regarding diet, physical activity, and daily habits, while allowing healthcare professionals to optimize treatment strategies and ensure proactive glycemic management. In this article, the term glycemic cycle refers to the patient-specific representation of daily glycemic variations, accounting for individual metabolic responses.

Definition and clinical relevance of the glycemic cycle

The glycemic cycle refers to daily fluctuations in blood glucose levels influenced by multiple factors, including food intake, physical activity, stress, and

antidiabetic therapies. These fluctuations reflect the dynamic nature of glucose homeostasis and vary considerably between individuals with diabetes [3].

Assessment of the glycemic cycle can be achieved either through intermittent capillary blood glucose measurements using a glucometer or through continuous monitoring of interstitial glucose using continuous glucose monitoring (CGM) systems. These complementary approaches provide insight into individual glycemic profiles and form the basis for clinical interpretation of glycemic variability and treatment adequacy [3,13].

Clinical rationale for glycemic cycle monitoring

Glycemic cycle monitoring is a key component of diabetes management, as it enables detailed analysis of daily glycemic fluctuations related to diet, physical activity, stress, and pharmacological treatments. This dynamic assessment provides information that cannot be captured by isolated glucose measurements or by glycated hemoglobin (HbA1c) alone [3–5].

Evaluation of the glycemic cycle supports individualized treatment adjustment, allows assessment of therapeutic effectiveness, and facilitates dose optimization when required. Importantly, it plays a central role in the identification, prevention, and management of hypoglycemic and hyperglycemic episodes, which remain major barriers to optimal glycemic control [4–7].

When used alongside HbA1c, glycemic cycle monitoring provides essential clinical information on glycemic variability and real-life metabolic control, thereby improving the precision of therapeutic decision-making [3,6].

Indications for glycemic cycle monitoring

The indication for glycemic cycle monitoring should be tailored to the patient's clinical profile, type of diabetes, therapeutic regimen, and risk of hypoglycemia.

In individuals with type 1 diabetes, glycemic cycle monitoring is indicated without exception. It may rely on capillary blood glucose measurements or, increasingly, on CGM systems, particularly in patients receiving intensive insulin therapy [6,8].

In type 2 diabetes, glycemic cycle monitoring is recommended in selected situations, including insulin-treated patients, those for whom insulin therapy is anticipated in the short or medium term, and patients treated with insulin secretagogues associated with an increased risk of hypoglycemia. It is also indicated when glycemic targets are not achieved or during intercurrent conditions likely to affect glycemic control [9].

In gestational diabetes, glycemic cycle monitoring is essential to ensure strict and safe glycemic

control and to reduce maternal and fetal complications [10].

CGM systems are particularly indicated in adults and children aged 4 years and older treated with intensive insulin therapy, as well as in selected patients receiving non-intensive insulin regimens whose glycemic targets remain unmet [11].

Practical implementation of glycemic cycle monitoring

Performing a glycemic cycle requires a structured approach integrating definition of glycemic targets, appropriate timing and frequency of measurements, and interpretation of results for therapeutic adjustment.

Capillary blood glucose monitoring provides point-in-time assessment of glycemia at key moments during the day. The reliability of results depends on appropriate device use, strip integrity, and clinical consistency of measured values, and remains essential in specific clinical situations [12].

Continuous glucose monitoring is based on subcutaneous measurement of interstitial glucose and offers a dynamic overview of glycemic fluctuations, including nocturnal periods and rapid changes. Modern CGM systems allow analysis of ambulatory glucose profiles and use of standardized metrics such as time in range, time below range, and glycemic variability, thereby enhancing clinical interpretation [13,14].

Because CGM measures interstitial glucose, unexpected readings should be confirmed by capillary blood glucose measurement in cases of discordant symptoms, rapid glucose fluctuations, or suspected hypoglycemia.

The choice between capillary glucose monitoring, CGM, or their combination should be guided by predefined glycemic goals, clinical context, and the patient's ability to appropriately use these technologies.

Interpretation of Glycemic Cycle Data

Interpretation of the glycemic cycle relies on an integrated analysis of glycemic data, taking into account individualized targets, therapeutic regimens, and the patient's clinical context. It represents a critical step in preventing complications and optimizing metabolic control.

The first step involves defining personalized glycemic targets based on age, diabetes duration, comorbidities, hypoglycemia risk, and life expectancy, in accordance with international recommendations [3]. These targets should remain dynamic and be regularly reassessed to avoid therapeutic inertia.

Accurate interpretation also requires a clear understanding of the onset, peak, and duration of action of antidiabetic therapies in order to distinguish between basal and postprandial glycemic disturbances. When capillary blood glucose monitoring is used, analysis of baseline glycemic levels and postprandial excursions allows identification of the predominant mechanism of dysglycemia and supports rational therapeutic adjustment, as described in classical pathophysiological models [17].

With CGM systems, interpretation is based on standardized metrics such as time in range (TIR), time below range (TBR), time above range (TAR), and glycemic variability. These parameters provide a comprehensive and dynamic assessment of glycemic control beyond the average value reflected by HbA1c and are now widely used in clinical practice [14,15].

Trend arrows generated by CGM systems offer real-time decision support, enabling anticipation of rapid glycemic changes and timely adaptation of treatment or daily behaviors [16,18]. Overall, glycemic cycle interpretation should follow a holistic approach integrating numerical data, clinical symptoms, and patient lifestyle.

The Role of Language in Communicating Glycemic Cycle Data

The language used to discuss glycemic cycle data with people living with diabetes plays a crucial role in shaping understanding, treatment adherence, and engagement in self-management.

The use of evaluative or judgmental terms, such as “good” or “bad” glycemic values, may induce feelings of guilt, frustration, or discouragement, particularly when results fall outside predefined targets. In contrast, neutral and supportive communication frames glycemic values as clinical data intended to guide therapeutic decisions rather than as measures of personal performance [1].

Adopting a patient-centered and exploratory language fosters trust between patients and healthcare professionals. Such communication strategies help strengthen patient autonomy, reduce diabetes-related distress, and support long-term engagement in care.

CONCLUSION

The glycemic cycle remains a central tool in diabetes management for both patients and healthcare professionals. It enables a refined understanding of individual glycemic profiles, supports personalized treatment adjustment, and complements HbA1c in the assessment of metabolic control.

Capillary blood glucose monitoring and continuous glucose monitoring represent complementary approaches, each providing distinct and clinically

relevant insights into glycemic cycle analysis. Their appropriate use, guided by clinical context and patient needs, contributes to more precise and safer diabetes care.

In an era of rapidly evolving glucose monitoring technologies, rigorous interpretation of the glycemic cycle remains highly relevant. It continues to serve as a cornerstone for achieving durable glycemic control, limiting therapeutic inertia, and preventing complications, while enhancing patient autonomy and overall well-being.

REFERENCES

1. Powers MA, Bardsley J, Cypress M, et al., Diabetes self-management education and support in adults with type 2 diabetes: A consensus report of the American Diabetes Association, the Association of Diabetes Care & Education Specialists, and the Academy of Nutrition and Dietetics. *Diabetes Care*. 2020 ;43(7):1636–1649. doi :10.2337/dc20-0023.
2. American Diabetes Association. Standards of Medical Care in Diabetes—2024. *Diabetes Care*. 2024 ;47(Suppl 1): S1–S350. doi :10.2337/dc24-Sint.
3. Monnier L, Colette C. Glycemic variability: Should we and can we prevent it? *Diabetes Care*. 2008 ;31(Suppl 2): S150–S154. Doi :10.2337/dc08-s241.
4. Hirsch IB. Glycemic variability and diabetes complications : Does it matter? Of course it does! *Diabetes Care*. 2015 ;38(8):1610–1614. Doi :10.2337/dc14-2898.
5. Ceriello A, Kilpatrick ES. Glycemic variability: Both sides of the story. *Diabetes Care*. 2013 ;36(Suppl 2):S272–S275. doi :10.2337/dc13-2030.
6. Battelino T, Danne T, Bergenstal RM, et al., Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. *Diabetes Care*. 2019 ;42(8):1593–1603. doi :10.2337/dc19-0028.
7. Seaquist ER, Anderson J, Childs B, et al., Hypoglycemia and diabetes: A report of a workgroup of the American Diabetes Association and The Endocrine Society. *Diabetes Care*. 2013 ;36(5):1384–1395. doi :10.2337/dc12-2480.
8. ISPAD Clinical Practice Consensus Guidelines 2022 : Glucose monitoring. *Pediatric Diabetes*. 2022 ;23(Suppl 27): S97–S120. doi :10.1111/pedi.13435.
9. Davies MJ, Aroda VR, Collins BS, et al., Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the ADA and the EASD. *Diabetes Care*. 2022 ;45(11):2753–2786. doi :10.2337/dc22-0034.
10. American Diabetes Association. Management of diabetes in pregnancy: Standards of Medical Care in Diabetes—2024. *Diabetes Care*. 2024 ;47(Suppl 1): S254–S266. doi :10.2337/dc24-S015.

11. Rodbard D. Continuous glucose monitoring : A review of recent studies demonstrating improved glycemic outcomes. *Diabetes Technol Ther.* 2017 ;19(S3):S25–S37. doi :10.1089/dia.2017.0035.
12. International Organization for Standardization. ISO 15197 :2013. In vitro diagnostic test systems— Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. Geneva : ISO ; 2013.
13. Beck RW, Bergenstal RM, Riddle TD, *et al.*, Validation of time in range as an outcome measure for diabetes clinical trials. *Diabetes Care.* 2019 ;42(3):400–405. doi:10.2337/dc18-1444.
14. Danne T, Nimri R, Battelino T, *et al.*, International consensus on use of continuous glucose monitoring. *Diabetes Care.* 2017 ;40(12):1631–1640. Doi :10.2337/dc17-1600.
15. Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. *Diabetes Technol Ther.* 2019 ;21(2):81–85. Doi :10.1089/dia.2018.0310.
16. Klonoff DC, Kerr D. Smart pens will improve insulin therapy. *J Diabetes Sci Technol.* 2018 ;12(3):551–553. Doi :10.1177/1932296818755365.
17. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients. *Diabetes Care.* 2003 ;26(3):881–885. doi :10.2337/diacare.26.3.881.
18. Ziegler R, Heidtmann B, Hilgard D, *et al.*, Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. *Pediatr Diabetes.* 2011 ;12(1):11–17. Doi :10.1111/j.1399-5448.2010.00650. x.