Saudi Journal of Medical and Pharmaceutical Sciences

Abbreviated Key Title: Saudi J Med Pharm Sci ISSN 2413-4929 (Print) | ISSN 2413-4910 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com

Original Research Article

Radiology

Association between Hypertension Duration and Brain Volume: An MRI-Based Quantitative Analysis

Alaa Suliman Mohammed^{1*}, Hussein Ahmed Hassan², Nurain M.A³

¹Department of Radiology, University of Medical Sciences and Technology, Khartoum, Sudan

DOI: https://doi.org/10.36348/sjmps.2025.v11i07.017 | Received: 03.06.2025 | Accepted: 11.07.2025 | Published: 19.07.2025

*Corresponding author: Alaa Suliman Mohammed

Department of Radiology, University of Medical Sciences and Technology, Khartoum, Sudan

Abstract

Background: Prolonged hypertension is believed to affect brain structure due to chronic vascular stress. **Objective:** To assess the correlation between hypertension duration and changes in brain volumes using 3D MRI. **Methods:** This cross-sectional study involved 100 hypertensive individuals aged 30–60 years. Brain volumes (gray and white matter) were measured using 3D MRI. Pearson correlation analysis was used to evaluate associations with hypertension duration. **Results:** Strong negative correlations were found between hypertension duration and both gray and white matter volumes (r = -0.49 to -0.56, p < 0.001). **Conclusion:** Longer duration of hypertension is associated with reduced brain volume, reinforcing the need for early detection and sustained management of blood pressure.

Keywords: Hypertension, Brain Volume, MRI, Cerebral Atrophy, Quantitative Analysis.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

The duration of hypertension may influence the severity of brain structural changes. Prolonged exposure to elevated blood pressure may cause cumulative cerebral damage through mechanisms such as endothelial dysfunction, chronic hypoperfusion, and of the blood-brain barrier. pathophysiological processes can lead to neuronal loss, white matter lesions, and brain atrophy, even in the of absence clinical symptoms. Advances particularly neuroimaging, three-dimensional volumetric MRI, have enabled more precise and quantitative assessment of brain morphology, providing valuable insights into the subtle effects of vascular risk factors. Understanding how the chronicity hypertension relates to brain volume loss is crucial for identifying at-risk individuals early and implementing timely interventions. This study explores the correlation between the duration of hypertension and volumetric parameters of brain tissue using 3D MRI, aiming to highlight the potential neuroanatomical consequences of long-term uncontrolled blood pressure.

2. MATERIALS AND METHODS

This cross-sectional descriptive analytical study included a sample of 100 hypertensive individuals aged

between 30 and 60 years. All participants had undergone brain MRI using a 1.5 Tesla Toshiba scanner and had a documented duration of hypertension. The MRI protocol included T1-weighted, T2-weighted, FLAIR, and 3D volumetric sequences, enabling the quantitative assessment of brain tissue compartments, including left and right white matter and gray matter volumes. Participants were included if they had a confirmed diagnosis of hypertension, documented disease duration, and provided informed consent. Individuals were excluded if they had a history of neurodegenerative or psychiatric disorders, traumatic brain injury, congenital brain anomalies, or space-occupying lesions. Poor image quality or missing data also led to exclusion. The primary variables assessed were age, gender, body mass index (BMI), hypertension duration, and brain volume measurements. Pearson correlation analysis was used to evaluate the association between hypertension duration and brain volumetric measures, with statistical significance defined at p < 0.05.

3. RESULTS

This study included 152 individuals, of whom 102 (83.6%) were diagnosed with hypertension and 50 (16.4%) served as the control group. Among the control group, 25 participants were male and 25 were female.

²College of Medical Radiologic Science, Karary University, Khartoum, Sudan

³Department of Anatomy, College of Medicine, Bayan University, Sudan

Four brain volume measurements were taken for each participant: Left Total White Matter (LTWM), Left Total Gray Matter (LTGM), Right Total White Matter (RTWM), and Right Total Gray Matter (RTGM). Additionally, weight and height were recorded, and Body Mass Index (BMI) was calculated. Age was documented for all participants, and the duration of hypertension (in years) was recorded for those in the hypertensive group.

 $1\pm159.67.$ Among males, the LTWM was $263.41\pm100.34,$ compared to 379.64 ± 23.18 in females. The median LTGM was $302.98\pm86.01,$ with males showing an average of 298.48 ± 61.31 versus 375.11 ± 19.97 in females. Similarly, RTWM was 284.64 ± 160.37 overall, with a male average of 272.17 ± 100.91 compared to 380.02 ± 22.49 in females. For RTGM, the median was $301.58\pm89.17,$ with males averaging 299.10 ± 62.49 and females $377.89\pm20.14.$

Table 1: Presents the characteristics of the sample and compares the brain volume measurements between males and females

	Overall sample		Male		Female	
	Median	IQR	Median	IQR	Median	IQR
LT WM	282.31	159.67	263.41	100.34	379.64	23.18
LT GM	302.98	86.01	298.48	61.31	375.11	19.97
RT WM	284.64	160.37	272.17	100.91	380.02	22.49
RT GM	301.58	89.17	299.10	62.49	377.89	20.14
BMI	28.44	6.90	28.33	6.26	29.72	8.51
Age (yrs)	47	17	47	17	43	17
Total (%)	152 (100%)		127 (83.6%)		25 (16.4%)	

3.1 Correlation Between Duration and Brain Volumes:

Table 2: Correlation between Duration of Hypertension and Brain Volumes

Variable	Correlation Coefficient (r)	P-value
Left White Matter (WM)	-0.496	0.000
Left Gray Matter (GM)	-0.556	0.000
Right White Matter (WM)	-0.490	0.000
Right Gray Matter (GM)	-0.564	0.000

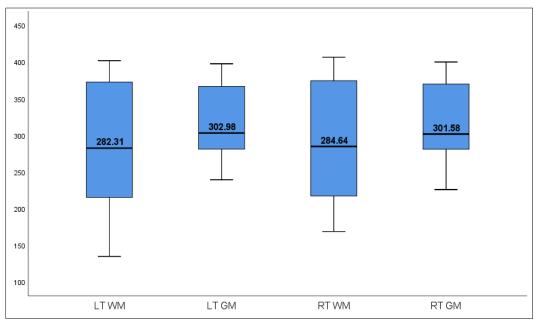


Figure 1: Present the comparison of brain volume measurements in all sample

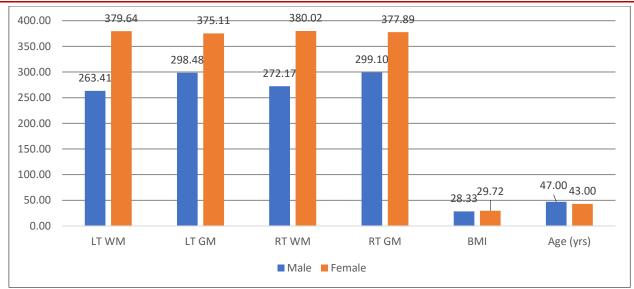


Figure 2: Comparison between male and female participants, indicating consistently higher values across all brain volume parameters in females

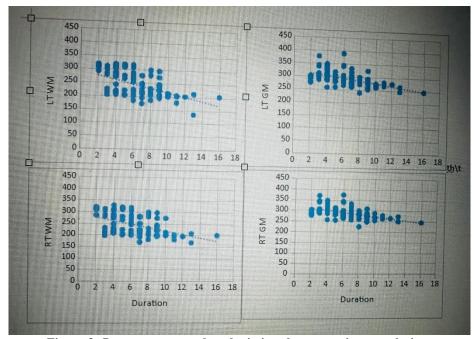


Figure 3: Presents scatter plots depicting these negative correlations

4. DISCUSSION

This study reveals a significant inverse correlation between the duration of hypertension and brain volumes—specifically in both gray and white matter. The results suggest that the longer an individual lives with hypertension, the greater the degree of brain atrophy. These findings align with previous research linking chronic high blood pressure with neurodegeneration, reduced cerebral perfusion, and brain tissue loss.

Importantly, the strength and consistency of the correlation across both hemispheres (left and right) and both tissue types (white and gray matter) point toward a diffuse and progressive impact of hypertension on the

brain. The use of 3D volumetric MRI enhances the precision of brain volume assessments, providing robust quantitative evidence of structural deterioration associated with prolonged hypertension.

Despite these significant findings, the study is limited by its cross-sectional nature, which precludes establishing causality. Additionally, potential confounding factors such as medication type, treatment adherence, comorbidities (e.g., diabetes), and lifestyle variables were not controlled. Future longitudinal studies with comprehensive clinical profiling are needed to confirm these associations and identify possible protective interventions.

5. CONCLUSION

Prolonged hypertension is associated with progressive reductions in both gray and white matter volumes, suggesting an adverse effect on global brain structure. These volumetric reductions may contribute to future cognitive impairment and increased dementia risk. Early identification and sustained control of blood pressure should be emphasized as a strategy to protect brain health and reduce the burden of cerebrovascular and neurodegenerative diseases

REFERENCES

- Lennon, M. J., Makkar, S. R., Crawford, J. D., & Sachdev, P. S. (2019). Midlife hypertension and Alzheimer's disease: A systematic review and meta-analysis. *Journal of Alzheimer's Disease*, 71, 307–316. https://doi.org/10.3233/JAD-190474
- Sharp, S. I., Aarsland, D., Day, S., Sønnesyn, H., & Ballard, C. (2011). Hypertension is a potential risk factor for vascular dementia: Systematic review. *International Journal of Geriatric Psychiatry*, 26(7), 661–669. https://doi.org/10.1002/gps.2572
- Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., . . . Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *Lancet*, 396(10248), 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6
- Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., Clement, D. L., Coca, A., De Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S. E., Kreutz, R., Laurent, S., . . . Brady, A. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. *European Heart Journal*, 39, 3021–3104. https://doi.org/10.1093/eurheartj/ehy339

- Verdecchia, P., & Angeli, F. (2005). Natural history of hypertension subtypes. *Circulation*, 111, 1094–1096.
 https://doi.org/10.1161/01.CIR.0000158690.78503.
- Franklin, S. S., Pio, J. R., Wong, N. D., Larson, M. G., Leip, E. P., Vasan, R. S., & Levy, D. (2005). Predictors of new-onset diastolic and systolic hyper tension: The framingham heart study. *Circulation*, 111(9),1121–1127. https://doi.org/10.1161/01.CIR.0000157159.39889. EC
- Sagie, A., Larson, M. G., & Levy, D. (1993). The natural history of borderline isolated systolic hypertension. *New England Journal of Medicine*, 329(26),1912–1917. https://doi.org/10.1056/nejm199312233292602
- Garfield, V., Farmaki, A.-E., Eastwood, S. V., Mathur, R., Rentsch, C. T., Bhaskaran, K., Smeeth, L., & Chaturvedi, N. (2021). HbA1c and brain health across the entire glycaemic spectrum. *Diabetes, Obesity and Metabolism*, 23(5), 1140–1149. https://doi.org/10.1111/dom.14321
- Li, J., Wu, Y., Zhang, D., & Nie, J. (2020). Associations between heart failure and risk of dementia: A PRISMA-compliant meta-analysis. *Medicine*, 99(5), e18492. https://doi.org/10.1097/MD.0000000000018492
- Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., . .

 Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *Lancet*, 396(10248), 413–446. https://doi.org/10.1016/S0140-6736(20) 30367-6