

Research Article

Phytochemicals as Antimicrobial Agents: A Review of Efficacy, Mechanisms and Therapeutic Potential

*Nitha B.¹**

¹Assistant Professor, Department of Biochemistry and Industrial Microbiology, Sree Ayyappa College Chengannur, Kerala, India

***Corresponding Author:**

Nitha B.

Email: drnithasac@gmail.com

Abstract: Plant secondary metabolites possess diverse antimicrobial properties which are exploited in traditional medicine for millennia. Five major phytochemical classes such as alkaloids, flavonoids, phenolic compounds, organosulfur compounds and tannins are analyzed with respect to their antimicrobial activity. Documented mechanisms of action include inhibition of bacterial topoisomerases and DNA gyrase, disruption of cell membrane integrity, interference with energy metabolism, iron chelation and suppression of virulence factors and biofilm formation. Quantitative evidence demonstrates that numerous phytochemicals achieve Minimum Inhibitory Concentrations (MICs) comparable to or superior to conventional antibiotics, with several compounds displaying synergistic potential when combined with standard antimicrobial agents. Structure-activity relationships have been elucidated for flavonoids and alkaloids, facilitating rational design of more potent derivatives. Despite considerable promise in preclinical investigations and agricultural applications, translation to human clinical therapeutics remains limited due to bioavailability constraints, lack of standardization, and insufficient large-scale clinical trials. Thus, this paper is an attempt to examine the efficacy, mechanisms of action and therapeutic potential of phytochemicals against bacterial, fungal and viral pathogens.

Keywords: Plant Secondary Metabolites, Antimicrobial Activity, Structure-Activity Relationships, Drug-Resistant Bacteria, Natural Products.

INTRODUCTION

Plant secondary metabolites represent an alternative wellness paradigm grounded in evolutionary principles: compounds that plants synthesize as defence mechanisms against pathogens possess inherent antimicrobial properties. The plethora of plant-derived compounds elucidated and potentially hundreds of thousands remaining uncharacterized, phytochemicals constitute a largely untapped reservoir of antimicrobial agents (Atanasov *et al.*, 2015). The global health architecture currently faces an existential threat from the escalating crisis of antimicrobial resistance (AMR), a phenomenon that threatens to undo a century of medical progress. Since antiquity, human civilizations have relied on the complex pharmacopeia of nature to treat infectious diseases. This ethnobotanical legacy is not merely historical folklore but is grounded in a profound evolutionary truth. Plants are engaged in a continuous, million-year evolutionary arms race against a vast array of pathogens, including bacteria, fungi and viruses. To survive, they have developed sophisticated chemical arsenals known as secondary metabolites. Unlike primary metabolites which facilitate basic growth and development, these secondary compounds such as alkaloids, flavonoids, terpenoids, tannins and

polyphenols serve as bioactive defence mechanisms, refined by natural selection to neutralize microbial invaders (Cowan, 1999).

The therapeutic potential of these phytochemicals lies in their structural diversity and their multi-target mode of action, which stands in sharp contrast to the "magic bullet" paradigm of conventional antibiotics. While synthetic drugs typically target a single cellular process (such as cell wall synthesis or protein translation), allowing bacteria to rapidly evolve specific resistance mechanisms, phytochemicals often exert pleiotropic effects. For instance, lipophilic terpenoids can disrupt the integrity of microbial cell membranes, leading to the leakage of vital intracellular constituents. Concurrently, flavonoids inhibit nucleic acid synthesis or disrupt energy metabolism, while specific alkaloids act as efflux pump inhibitors (EPIs) (Joshi *et al.*, 2014). This ability to block efflux pumps is particularly significant, as it can potentially reverse resistance in MDR strains by preventing bacteria from expelling antibiotic agents, thereby restoring the efficacy of failing drugs. The antimicrobial properties of plants have been recognized and utilized across diverse civilizations for thousands of years. The

plant *Tagetes minuta* has been employed extensively in folk medicine for various infectious disease treatment (Al-Musayeib *et al.*, 2014).

Furthermore, the study of phytochemicals is revealing promising synergistic interactions. Plant extracts often function better as complex mixtures rather than as isolated compounds, a phenomenon described as the "entourage effect" (Sanchez-Ramos, 2014). This synergy not only enhances antimicrobial potency but also raises the genetic barrier for resistance development, as pathogens struggle to adapt simultaneously to multiple chemical stressors. As the pharmaceutical industry searches for novel scaffolds to combat resistant pathogens like methicillin-resistant *Staphylococcus aureus* (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE), plant secondary metabolites offer a vast, largely untapped reservoir of lead compounds. Thus, this paper is an attempt to examine the efficacy, mechanisms of action and therapeutic potential of phytochemicals against bacterial, fungal and viral pathogens.

Classification of antimicrobial phytochemicals

The rise of antimicrobial resistance necessitates the urgent exploration of novel therapeutic agents, with plant-derived compounds offering a vast and historically significant resource. These antimicrobially active phytochemicals represent a diverse array of secondary metabolites, each with unique mechanisms of action against bacterial, fungal and viral pathogens. The categorization typically organizes these compounds based on their core chemical structure such as phenolics, terpenoids, alkaloids and polypeptides which directly correlates with their bioactive properties. This structural framework not only facilitates the identification of promising leads but also aids in understanding their modes of action, synergies and potential for development into new antimicrobial strategies, thereby bridging traditional knowledge with modern pharmacological innovation. Among the plant secondary metabolites, five classes demonstrate particularly robust antimicrobial activities.

- **Flavonoids:** Flavonoids are ubiquitous in photosynthesizing cells and occur widely in fruit, vegetables, nuts, seeds, tea, wine, propolis and honey, representing a common dietary constituent. The basic structural feature of flavonoids is the 2-phenyl-benzo-pyrane or flavane nucleus, consisting of two benzene rings (A and B) linked through a heterocyclic pyrane ring (C). Major flavonoid classes include flavones (e.g., luteolin, apigenin), flavonols (e.g., quercetin, kaempferol, galangin), flavanones (e.g., naringenin), flavan-3-ols/catechins (e.g., epicatechin gallate, epigallocatechin gallate), isoflavones (e.g., genistein), anthocyanidins and

chalcones. Hummelova *et al.* (2015) recorded the antimicrobial effects of 15 naturally occurring isoflavones and their metabolites for their possible antibacterial properties against nine Gram-positive and Gram-negative bacteria.

- **Phenolic compounds and tannins:** Phenolic compounds encompass simple phenols, phenolic acids, coumarins and polyphenols, all characterized by aromatic benzene rings bearing hydroxyl substituents. Polyphenols include tannins, which are water-soluble polyphenolic compounds of variable molecular weight found abundantly in nature with the capacity to precipitate proteins. Two major tannin classes exist: hydrolyzable tannins (HT), based on gallic acid typically esterified with glucose and condensed tannins (CT) or proanthocyanidins, derived from flavonoid monomers. Phan *et al.* (2014) reported the structure-dependent interactions of polyphenols with a biomimetic membrane system. While Zhang *et al.* (2014) noted that polyphenolic extracts inhibit bacterial quorum sensing and biofilm formation. Similar observations about effect of tannins were also available (Jada *et al.*, 2014; Mailoa *et al.*, 2014).
- **Alkaloids:** Alkaloids are nitrogen-containing heterocyclic compounds with great structural diversity. Classes include pyridine alkaloids (e.g., piperine), piperidine, quinoline, indole, pyrrolidine, benzophenanthridine and other types. Alkaloids range from simple structures to complex polycyclic compounds, with representatives found across numerous plant families (Cushnie *et al.*, 2014). According to Kittakoop *et al.* (2014), in contemporary antibacterial chemotherapy, alkaloids have a track record of success as drug scaffolds and scaffold substructures.
- **Organosulfur compounds:** Organosulfur compounds derive primarily from two plant families: Alliaceae (garlic, onion, leek) and Brassicaceae (cabbage, kale, cauliflower, horseradish, wasabi), featuring S-alk(en)yl-L-cysteine sulfoxides as primary constituents. Enzymatic cleavage converts these precursors to thiosulfinate (e.g., allicin) and isothiocyanates, which possess antimicrobial properties. Feng *et al.* (2014) investigated the responses of garlic-derived organosulfur compounds against bacterial pathogens.
- **Other classes:** Additional phytochemical classes demonstrating antimicrobial activity include iridoids and secoiridoids (cyclic monoterpenoids with iridane skeleton), coumarins (benzopyrones), and naphthoquinones (e.g., lapachol, plumbagone, juglone). According to De Luca *et al.* (2014) members of the Acanthaceae, Apocynaceae, Bignoniaceae, Caprifoliaceae, Gentianaceae, Labiate, Lamiaceae, Loasaceae, Loganiaceae, Oleaceae, Plantaginaceae,

Rubiaceae, Saxifragaceae, Scrophulariaceae, Valerianaceae and Verbenaceae families are well known to accumulate thousands of bioactive iridoids/secoiridoids.

Mechanisms of antimicrobial action

Plants have evolved an extraordinary arsenal of chemical defences against microbial pathogens, generating diverse secondary metabolites that represent a rich reservoir of bioactive compounds. These phytochemicals serve critical ecological functions in plant survival and adaptation to environmental stressors. In response to the contemporary crisis of antimicrobial resistance, wherein bacteria have progressively diminished their susceptibility to conventional antibiotics through multiple adaptive mechanisms, scientific attention has increasingly focused on understanding how these plant-derived compounds exert antimicrobial effects and whether they can restore therapeutic efficacy against drug-resistant pathogens.

Phytochemical antimicrobial activity operates through multiple, often synergistic, targets within bacterial cells (Monte *et al.*, 2014). The bacterial cell membrane represents a primary vulnerability, as numerous lipophilic and amphipathic compounds disrupt membrane integrity through interaction with the lipid bilayer. These agents penetrate the phospholipid matrix, distorting membrane fluidity and altering permeability, leading to leakage of essential intracellular constituents and ultimately osmotic imbalance and cell death. The efficacy of membrane-directed compounds is markedly influenced by bacterial cell wall architecture: Gram-positive bacteria, which possess a thick peptidoglycan layer unshielded by an outer membrane, are generally more susceptible than Gram-negative bacteria whose lipopolysaccharide-rich outer membranes present a hydrophobic barrier excluding many hydrophilic antimicrobial agents. Critically, structure-activity relationships determine membrane targeting efficiency; for example, the number and position of hydroxyl groups, alkyl chain length, and degree of conjugation in phenolic compounds directly correlate with their hydrophobicity and membrane penetration capacity.

Beyond membrane disruption, phytochemicals inhibit bacterial nucleic acid synthesis through multiple mechanisms. Alkaloids such as berberine intercalate with DNA or inhibit topoisomerase and gyrase enzymes essential for replication, transcription, and repair, thereby blocking essential cellular processes (Baikar and Malpathak, 2010). Phenolic compounds, including flavonoids and coumarins, similarly target DNA gyrase and topoisomerase IV, while tannins exert antimicrobial effects partly through direct inactivation of microorganisms and partly through cleavage to

smaller, more potent phenolic acids by bacterial enzymes (Eom *et al.*, 2014; Redondo *et al.*, 2014). This multi-targeting approach on nucleic acid systems contrasts sharply with the single-mechanism action of many conventional antibiotics, theoretically reducing the probability of resistance emergence.

A third mechanism underlying phytochemical antimicrobial activity involves circumvention of bacterial resistance itself. Many phytochemicals function as efflux pump inhibitors, blocking the export systems through which bacteria eject antibiotics, thus restoring intracellular antibiotic accumulation to lethal concentrations. Alkaloids such as reserpine and piperine, flavonoids including kaempferol and baicalein and other compounds have demonstrated capacity to enhance antibiotic susceptibility in multidrug-resistant strains both *in vitro* and through documented synergistic combinations. Furthermore, some phytochemicals suppress virulence factors and biofilm formation suggesting that even compounds with modest direct antimicrobial potency may contribute meaningfully to infection control through multiple biological endpoints (Li *et al.*, 2014). In short, understanding these mechanisms at molecular and cellular levels is prerequisite to rational drug development from natural products and to predicting efficacy, safety, and resistance-circumvention potential in clinical contexts.

Therapeutic potential of phytochemicals

By the early 21st century, the rapid escalation of antimicrobial resistance (AMR) had become a critical global health concern. The "golden age" of antibiotics was waning as pathogens like methicillin-resistant *Staphylococcus aureus* (MRSA) and multi-drug-resistant *Escherichia coli* evolved mechanisms to evade conventional therapies. In this context, novel bioactive compounds from plants garnered attention. Unlike synthetic drugs which often target a single site, phytochemicals (plant secondary metabolites) frequently exert antimicrobial effects through multiple, complex mechanisms, potentially reducing the likelihood of resistance development.

- **Phenolics and membrane disruption:** Phenolic compounds, including flavonoids and tannins, are among the most studied antibacterial agents. Research by Monte *et al.* (2014) highlighted the efficacy of simple phenolics like salicylic acid and 7-hydroxycoumarin against both Gram-positive and Gram-negative bacteria. These compounds are able to damage microbial membrane structures and modify bacterial surface hydrophobicity, effectively disrupting the cell's integrity (Monte *et al.*, 2014).
- **Tannins:** were identified as potent antimicrobial agents due to their ability to bind to proline-rich proteins and interfere with cell wall synthesis. Chung *et al.* (1998) highlighted that tannic acid

and propyl gallate demonstrated significant inhibitory activity against foodborne pathogens by chelating iron (essential for bacterial growth) and inactivating microbial enzymes.

- **Alkaloids and efflux pump inhibition:** Alkaloids represent a distinct class of nitrogenous compounds with profound antibacterial properties. Cushnie *et al.* (2014) emphasized that alkaloids such as berberine and squalamine do not merely kill bacteria directly; they often target the mechanisms of resistance itself. For instance, certain alkaloids function as efflux pump inhibitors (EPIs). By blocking the pumps that bacteria use to eject toxic substances, these phytochemicals allow intracellular concentrations of antibacterial agents to reach lethal levels (Bag and Chattopadhyay, 2014). This mechanism is particularly valuable against Gram-negative bacteria, whose double-membrane structure typically acts as a formidable barrier to antibiotics.
- **Antiviral activity:** Baicalin, a flavone glycoside from *Scutellaria baicalensis*, inhibits HIV-1 infection and replication through multiple mechanisms, including inhibition of HIV-1 entry into CD4+ cells and antagonism of HIV-1 reverse transcriptase (Li *et al.*, 2000). Baicalein (the aglycone form) and robustaflavone inhibit HIV-1 reverse transcriptase, as do several catechins, though catechin interaction with the viral enzyme may be non-specific. Demethylated gardenin A and 3,2'-dihydroxyflavone inhibit HIV-1 proteinase, while robinetin, myricetin, baicalein, and quercetagetin inhibit HIV-1 integrase, an enzyme essential for integration of viral DNA into the host genome (Pasetto *et al.*, 2014). In addition, the activity against multiple virus types including herpes simplex virus, respiratory syncytial virus, poliovirus, influenza A (H5N1) and Sindbis virus by phytochemicals was also well established (Ooi *et al.*, 2014; Lee *et al.*, 2014). Chrysin and kaempferol inhibit viral replication of HSV, human coronavirus and rotavirus.
- **Antifungal activity:** Gabriela *et al.* (2014) reported the effect of phytochemicals on virulence factors from *Candida* species. Teodoro *et al.* (2015) recorded the potential use of phenolic acids as anti-candida agents. In another study, Santos Júnior *et al.* (2014) observed the antifungal activity of flavonoids from *Heteropterys byrsinimifolia* and a commercial source against *Aspergillus ochraceus*.
- **Terpenoids and ergosterol interaction:** Terpenoids are critical antifungal agents. Leite *et al.* (2014) demonstrated that citral, a monoterpene aldehyde, exhibits significant fungicidal activity against *Candida albicans*. The mechanism was identified as membrane disruption: citral does not necessarily inhibit cell wall synthesis but likely interacts with membrane components or forms charge-transfer complexes with tryptophan, leading to the loss of cellular integrity and death. Similarly, essential oils rich in terpenoids, such as those from *Coriandrum sativum* (coriander), were shown to inhibit *Candida* spp. by interfering with membrane permeability, leading to leakage of essential intracellular components (Freires *et al.*, 2014).
- **Curcumin and mitochondrial pathways:** Curcumin, the principal curcuminoid of turmeric, was extensively reviewed for its broad-spectrum antimicrobial activity. Moghadamtsousi *et al.* (2014) reported that curcumin exerts antifungal effects by downregulating the expression of the *ERG3* gene in *Candida albicans*. This downregulation leads to a reduction in ergosterol, the main sterol in the fungal cell membrane, thereby compromising the cell's structure. Additionally, curcumin was found to induce the accumulation of reactive oxygen species (ROS), leading to early apoptosis (programmed cell death) in fungal cells.
- **Inhibition of viral entry and replication:** Phytochemicals could block viral attachment or inhibit key enzymes. For example, glycyrrhizin (derived from licorice root) was identified as a notable antiviral agent, capable of inhibiting the replication of the SARS-associated coronavirus (SARS-CoV) and HIV. Its mechanism involves interfering with cell membrane fluidity and viral entry, as well as inhibiting protein kinase C (PKC), which is often hijacked by viruses for replication (Liu and Du, 2012).
- **Essential oils and viral envelopes:** Lipophilic compounds in essential oils were found to be particularly effective against enveloped viruses (e.g., Herpes Simplex Virus, HSV). These compounds can dissolve or disrupt the lipid envelope of the virus, rendering it incapable of infecting host cells. Studies on *Cinnamomum* extracts, for instance, demonstrated significant antioxidative and potential antimicrobial properties that extend to viral inhibition by damaging viral structures before they enter the host (Pandey *et al.*, 2012).

CONCLUSION

Numerous phytochemicals have potent antimicrobial activity comparable to or superior to conventional antibiotics, with particularly impressive results documented for flavonoids, alkaloids, organosulfur compounds and tannins against clinically important resistant pathogens. However, multiple distinct targets and modes of action, including inhibition of bacterial topoisomerases, disruption of cell membrane integrity, interference with energy metabolism, iron chelation and suppression of virulence factors are witnessed. Structure-activity relationship studies have identified

critical chemical features enhancing antimicrobial activity, providing rational bases for semisynthetic derivative development. Synergistic interactions between phytochemicals and conventional antibiotics, documented in both *in vitro* and limited *in vivo* investigations, suggest practical strategies for clinical application that do not require development of phytochemicals as replacement antimicrobials but rather as adjuvants extending the lifespan of existing therapeutics. Substantial barriers to clinical translation remain formidable. The evolutionary origin of phytochemical antimicrobial properties, refined over millions of years of plant-pathogen coevolution, suggests that these compounds may possess inherent advantages over synthetic antimicrobials designed through purely rational processes lacking the benefit of such evolutionary optimization. Integration of ethnopharmacological knowledge with contemporary scientific methodology, combined with advances in pharmaceutical technology and formulation science, provides realistic pathways for developing phytochemical-derived antimicrobials capable of addressing the global antimicrobial resistance crisis while minimizing the substantial risks and costs inherent in synthesis and optimization of entirely novel compounds.

REFERENCES

- Al-Musayeb, N.M., Mohamed, G.A., Ibrahim, S.R., Ross, S.A. 2014. New thiophene and flavonoid from *Tagetes minuta* leaves growing in Saudi Arabia. *Molecules.* 19(3):2819-2828.
- Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, E.M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E.H., Rollinger, J.M., Schuster, D., Breuss, J.M., Bochkov, V., Mihovilovic, M.D., Kopp, B., Bauer, R., Dirsch, V.M., Stuppner, H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. *Biotechnol Adv.* 33(8):1582-1614.
- Bag, A. and Chattopadhyay, R. R. 2014. Efflux-pump inhibitory activity of a gallotannin from *Terminalia chebula* fruit against multidrugresistant uropathogenic *Escherichia coli*. *Nat. Prod. Res.* 28:1280-1283.
- Baikar, S. and Malpathak, N. 2010. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs. *Pharmacogn Rev.* 4(7):12-26.
- Chung, K.T., Wong, T.Y., Wei, C.I., Huang, Y.W., Lin, Y. 1998. Tannins and Human Health: A Review. *Critical Reviews in Food Science and Nutrition.* 38(6):421-464.
- Cowan, M.M. 1999. Plant products as antimicrobial agents. *Clin Microbiol Rev.* 12(4):564-582.
- Cushnie, T.P.T., Cushnie, B., Lamb, A.J. 2014. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. *International Journal of Antimicrobial Agents.* 44(5):377-386.
- De Luca, V., Salim, V., Thamm, A., Masada, S.A., Yu, F. 2014. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. *Current Opinion in Plant Biology.* 19(June):35-42.
- Eom, S.H., Lee, D.S., Jung, Y.J., Park, J.H., Choi, J.I., Yim, M.J., Jeon, J.M., Kim, H.W., Son, K.T., Je, J.Y., Lee, M.S., Kim, Y.M. 2014. The mechanism of antibacterial activity of phlorofucosuoeckol-A against methicillin-resistant *Staphylococcus aureus*. *Appl Microbiol Biotechnol.* 98(23):9795-9804.
- Feng, S., Eucker, T.P., Holly, M.K., Konkel, M.E., Lu, X., Wang, S. 2014. Investigating the responses of *Cronobacter sakazakii* to garlic-driven organosulfur compounds: a systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy. *Appl Environ Microbiol.* 80(3):959-971.
- Freires, Ide A., Murata, R.M., Furletti, V.F., Sartoratto, A., Alencar, S.M., Figueira, G.M., de Oliveira Rodrigues, J.A., Duarte, M.C., Rosalen, P.L. 2014. *Coriandrum sativum* L. (Coriander) essential oil: antifungal activity and mode of action on *Candida* spp., and molecular targets affected in human whole-genome expression. *PLoS One.* 9(6):e99086. doi: 10.1371/journal.pone.0099086.
- Gabriela, N., Rosa, A.M., Catiana, Z.I., Soledad, C., Mabel, O.R., Esteban, S.J., Veronica, B., Daniel, W., Ines, I.M. 2014. The effect of *Zuccagnia punctata*, an Argentine medicinal plant, on virulence factors from *Candida* species. *Nat Prod Commun.* 9(7):933-936.
- Hummelova, J., Rondevaldova, J., Balastikova, A., Lapcik, O., Kokoska, L. 2015. The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin. *Lett Appl Microbiol.* 60(3):242-247.
- Jada, M.S., Usman, W.A., Adamu, Y. 2014. *In vitro* Antimicrobial Effect of Crude Tannins Isolated from the Leaf of *Annona senegalensis*. *International Journal of Biochemistry Research & Review.* 4(6):615-623.
- Joshi, P., Singh, S., Wani, A., Sharma, S., Jain, S.K., Singh, B. 2014. Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of *Staphylococcus aureus*: Reversing the resistance against frontline antibacterial drugs. *Med Chem Commun.* 5:1540-1547.
- Kim, J.H., Ryu, Y.B., Lee, W.S., Kim, Y.H. 2014. Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from *Corydalis turtschaninovii* rhizome. *Bioorg Med Chem.* 22(21):6047-6052.

- Kittakoop, P., Mahidol, C., Ruchirawat, S. 2014. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. *Curr. Top. Med. Chem.* 14:239-52.
- Lee, J.S., Ko, E.-J., Hwang, H.S., Lee, Y.-N., Kwon, Y.-M., Kim, M.-C., Kang, S.-M. 2014. Antiviral activity of ginseng extract against respiratory syncytial virus infection. *Int. J. Mol. Med.* 34:183-190.
- Leite, M.C., Bezerra, A.P., de Sousa, J.P., Guerra, F.Q., Lima, Ede O. 2014. Evaluation of Antifungal Activity and Mechanism of Action of Citral against *Candida albicans*. *Evid Based Complement Alternat Med.* 2014:378280. doi: 10.1155/2014/378280.
- Li, B.Q., Fu, T., Dongyan, Y., Mikovits, J.A., Ruscetti, F.W., Wang, J.M. 2000. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. *Biochem Biophys Res Commun.* 276(2):534-538.
- Li, G., Chunhong, Y., Yunfeng, X., Yuqing, F., Qian, W., Xiaoying, L., Baowei, Y., Xin, W., Xiaodong, X. 2014. Punicalagin inhibits salmonella virulence factors and has anti-quorum-sensing potential. *Appl. Environ. Microbiol.* 80:6204-6211.
- Liu, A.L. and Du, G.H. 2012. Antiviral Properties of Phytochemicals. *Dietary Phytochemicals and Microbes.* (Feb):93-126. doi: 10.1007/978-94-007-3926-0_3.
- Mailoa, M.N., Mahendradatta, M., Djide, N. 2014. Test of antimicrobial activity of tannins extract from guava leaves to pathogens microbial. *International Asian Research Journal.* 02(01):43-50.
- Moghadamousi, S.Z., Kadir, H.A., Hassandarvish, P., Tajik, H., Abubakar, S., Zandi, K. 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. *Biomed Res Int.* 2014:186864. doi: 10.1155/2014/186864.
- Monte, J., Abreu, A.C., Borges, A., Simões, L.C., Simões, M. 2014. Antimicrobial Activity of Selected Phytochemicals against *Escherichia coli* and *Staphylococcus aureus* and Their Biofilms. *Pathogens.* 3(2):473-498.
- Monte, J., Abreu, A.C., Borges, A., Simões, L.C., Simões, M. 2014. Antimicrobial Activity of Selected Phytochemicals against *Escherichia coli* and *Staphylococcus aureus* and Their Biofilms. *Pathogens.* 3(2):473-498.
- Ooi, V., Chan, P.K.S., Chiu, L.C.M., Sun, S.S.M., Wong, H.N.C. 2014. Antiviral activity of Chinese medicine-derived phytochemicals against avian influenza A (H5N1) virus. *Hong Kong Med. J.* 20(Suppl 4):S37-41.
- Pandey, A.K., Mishra, A.K. and Mishra, A. 2012. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant *Cinnamomum tamala*. *Cell. Mol. Biol.* 58(1):142-147.
- Pasetto, S., Pardi, V., Murata, R.M. 2014. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber *In Vitro* Model. *PLoS ONE.* 9(12):e115323. <https://doi.org/10.1371/journal.pone.0115323>.
- Phan, H.T.T., Yoda, T., Chahal, B., Morita, M., Takagi, M., Vestergaard, M.C. 2014. Structure-dependent interactions of polyphenols with a biomimetic membrane system. *Biochim. Biophys. Acta.* 1838:2670-2677.
- Redondo, L.M., Chacana, P.A., Dominguez, J.E., Fernandez, Miyakawa, M.E. 2014. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. *Front Microbiol.* 5:118. doi: 10.3389/fmicb.2014.00118.
- Sanchez-Ramos, J. 2014. The entourage effect of the phytocannabinoids. *Annals of Neurology.* 77(6):1083.
- Santos Júnior, H.M., Campos, V.A.C., Alves, D.S., Cavalheiro, A.J., Souza, L.P., Botelho, D.M.S., Chalfoun, S.M., Oliveira, D.F. 2014. Antifungal activity of flavonoids from Heteropterys byrsinimifolia and a commercial source against *Aspergillus ochraceus*: In silico interactions of these compounds with a protein kinase. *Crop Protection.* 62(August):107-114.
- Teodoro, G.R., Ellepola, K., Seneviratne, C.J. and Koga-Ito, C.Y. 2015. Potential Use of Phenolic Acids as Anti-*Candida* Agents: A Review. *Front. Microbiol.* 6:1420. doi: 10.3389/fmicb.2015.01420.
- Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., Dong, M. 2014. Polyphenolic extract from *Rosa rugosa* tea inhibits bacterial quorum sensing and biofilm formation. *Food Control.* 42:125-131.