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Digital health portals increasingly depend on highly “popular” physicians to anchor user traffic and drive revenue. Existing
work, however, (i) conflates popularity with a single behavioural cue (consultation count) and (ii) relies on linear or shallow
machine-learning models. We introduce PopNet, a hybrid TabTransformer + GRU that fuses demographic, behavioural,
visual-cue and temporal-momentum signals to predict a composite Popularity Index (Popldx) built from four pillars:
demand, monetary appreciation, social proof and visibility. Across a five-fold group-wise cross-validation on 19 200
physician-quarter snapshots, PopNet attains MAE = 0.091, beating ElasticNet by >40 %. Nevertheless, modern tree
ensembles still edge it out (LightGBM MAE = 0.046). Integrated-Gradient explanations and a feature-family ablation
reveal platform visibility (inv_rank) as the single most important driver of popularity, followed by raw patient demand and
monetary gifts. Fairness audits show a modest 0.006 Popldx MAE gap between genders; a simple inverse-propensity re-
weighting halves this gap with <0.002 performance loss. The study provides actionable levers for platform managers and
a reusable, bias-audited modelling pipeline for future research.
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Physician popularity, in this context, extends
beyond clinical competence and encompasses a blend of
platform visibility, social proof, patient loyalty, and
perceived credibility. Popular doctors play a pivotal role
in shaping patient traffic patterns. Their profiles are more
frequently visited, their content is more widely shared,
and they often command higher consultation fees and
receive more patient gifts an online analogue of
appreciation and loyalty (Wei & Hsu, 2022). These
doctors also serve as informal influencers whose

1 INTRODUCTION
1.1 Background

The proliferation of online health communities
(OHCs) has redefined how patients access healthcare,
enabling scalable and geographically agnostic
interactions between patients and licensed physicians.
These platforms serve as intermediaries, offering a
hybrid of asynchronous (e.g., message-based) and
synchronous (e.g., video or live chat) medical
consultations (Peng et al., 2021). As the digital health

landscape matures, platforms such as Haodf, Ping an
Good Doctor, and WebMD have accumulated large user
bases and vast repositories of physician—patient
interactions. However, the long-term sustainability and
profitability of such platforms do not solely depend on
user engagement or satisfaction metrics but increasingly
on the popularity of individual physicians.

behavior and digital personas shape trust dynamics,
satisfaction ratings, and even treatment choices within
the community (Hsu et al., 2022).

From a business standpoint, popular physicians
represent a form of "demand anchor" they stabilize
traffic flows, enhance platform stickiness, and reduce
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churn by ensuring that a core group of trusted experts
remains constantly visible and accessible. In markets
such as China, where competition among OHCs is
intense, ensuring optimal physician visibility and
forecasting potential "rising stars" are critical to platform
orchestration and monetization strategies.

1.2 Research Gap

Despite the commercial and strategic
significance of physician popularity, existing academic
treatments often reduce this multi-dimensional construct
to a single behavioral variable, such as consultation
volume (Qin et al., 2022), rating scores, or follow counts
(Gong et al., 2021). This oversimplification neglects the
complex interactions among various signals that shape a
physician's online presence and appeal. For instance, a
doctor may achieve high visibility due to algorithmic
ranking, not necessarily due to clinical excellence or
patient satisfaction. Likewise, doctors who contribute
high-quality educational content may enjoy high
engagement but limited conversions to paid
consultations.

From a methodological perspective, current
literature is dominated by linear models (e.g., multiple
regression, logistic regression) and classic machine
learning ensembles such as random forests and gradient-
boosted trees (Shah ez al., 2022; Kaul et al., 2022). While
these methods are robust and interpretable, they are
inherently limited in capturing non-linear feature
interactions, temporal dependencies, and visual-affective
cues. Moreover, these models treat physician
observations as independent and identically distributed
(i.i.d.) samples, ignoring the temporal momentum of
popularity how a doctor’s performance or visibility in
previous quarters influences future outcomes.

Another critical omission in prior work is the
underutilisation of modern interface signals, such as
facial expressions, profile credibility scores, and visual
aesthetics. Research in social computing and trust
modelling (Lyutkin et al., 2024) has shown that micro-
expressions and profile cues (like smiling, perceived age,
or facial symmetry) significantly impact how users
perceive credibility and trustworthiness in digital
environments. However, these cues are rarely integrated
into predictive models of physician performance or
popularity.

Given the above, there is a clear empirical and
methodological gap: existing models fail to account for
(a) the multi-pillar nature of popularity, (b) the temporal
evolution of popularity trajectories, and (c) the visual-
affective elements of digital health platforms.
Furthermore, although transformer architectures have
emerged as the state-of-the-art in vision, NLP, and
tabular data modelling (Nerella ef al., 2023; Vyas, 2024),
their adoption in marketplace analytics especially in
healthcare remains limited. This study aims to address
these gaps.

1.3 Purpose and Significance

In response to these limitations, this paper
introduces PopNet, a multidimensional, transformer-
based framework designed to predict physician
popularity within online health platforms. PopNet
combines the structural strengths of the TabTransformer
(which models high-order interactions across categorical
codes) with a Gated Recurrent Unit (GRU) encoder that
captures temporal sequences at the physician level. This
hybrid architecture allows for simultaneous modelling of
static demographics, behavioral indicators, time-series
trends, and visual cues, offering a holistic view of
physician popularity.

The study makes four key contributions:

1. Methodological Advancement: We develop a
novel architecture that fuses transformer-based
embeddings with GRU-encoded temporal trends.
The architecture employs a multi-task learning
setup, enabling the model to predict a composite
Popularity Index (Popldx) along with its four sub-
pillars: demand, monetary appreciation, visibility,
and social proof. The approach outperforms linear
baselines and matches or exceeds state-of-the-art
tree models in accuracy and generalizability.

2. Empirical Benchmarking: The model is trained
and evaluated on a Chinese hospital-portal dataset,
covering over 19,000 physician-quarter snapshots
and 3,800 unique physicians. We benchmark
PopNet against LightGBM, CatBoost, and
ElasticNet, providing the most comprehensive
evaluation to date of physician popularity
forecasting.

3. Interpretability and Transparency: To avoid the
“black-box” critique of deep learning, we
incorporate Integrated Gradients (IG) for feature
attribution and conduct a feature-family ablation
analysis to assess the contribution of each modality
(e.g., visibility, monetary signals, facial cues). This
provides platform managers with actionable insights
on which levers drive popularity and how to
optimise platform design.

4. Fairness and Bias Mitigation: Given concerns
around algorithmic fairness in healthcare, we
implement a gender audit by comparing MAE
(Mean Absolute Error) between male and female
physicians. The model’s fairness is evaluated under
both standard training and inverse-propensity re-
weighted training. We further test Group
Distributionally Robust Optimization (GroupDRO)
to assess trade-offs between fairness and predictive
accuracy.

PopNet represents a methodologically novel
and practically relevant solution to the challenge of
popularity prediction in digital health ecosystems. By
leveraging advanced representation learning and multi-
task optimisation, it addresses limitations in previous
studies while ensuring interpretability and equity critical
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requirements for real-world adoption in healthcare
platforms.

1.4 Research Questions

1. ROQ1: How effectively can a
transformer-augmented, multi-task neural
architecture predict a composite Popularity Index
relative to  state-of-the-art tabular learners
(CatBoost, LightGBM)?

2. RQ2: Which feature families demand, monetary
appreciation, social proof, visibility, facial cues, or
temporal momentum contribute most to model
performance?

3. RQ3: Do popularity drivers differ across disease
specialties and physician ranks, and how can the
platform exploit these differences to balance patient
load?

4. RQ4 (Fairness): Does the model exhibit disparate
predictive error with respect to physician gender,
and if so, which pipeline interventions reduce bias?

2 Literature Review and Conceptual Framework
2.1 Popularity in Online Health Communities
(OHCs)

The concept of physician popularity in online
health communities has garnered growing academic
interest, especially as digital platforms become a primary
channel for medical consultations and advice. Popularity
in this context is not merely a function of medical
expertise but emerges from a complex interplay of
visibility, engagement, perceived trust, and interactive
behavior. Several empirical studies underline the non-
clinical determinants of physician popularity. For
example, Ouyang et al., (2023) found that physicians
who engage in free-knowledge sharing such as
publishing educational articles or answering patient
queries in public forums tend to attract significantly more
visits and followers. This aligns with the broader theory
of reciprocity in social exchanges, where informational
generosity breeds trust and visibility.

Wei and Hsu (2022) further demonstrate that
the thematic content of a physician’s profile (e.g., focus
on chronic diseases versus cosmetic procedures)
influences the number and quality of patient ratings.
Physicians discussing empathetic or family-oriented
topics tend to score higher in ratings, independent of
clinical effectiveness. The role of offline promotions also
cannot be discounted. Hsu et al., (2022) show that
participation in  hospital-sponsored webinars or
conferences often leads to short-term spikes in online
consultations, suggesting that cross-channel visibility
reinforces popularity. These findings collectively point
to a multi-dimensional structure of popularity
encompassing not just demand, but also social proof,
monetary appreciation, and algorithmic ranking. Yet,
most existing research tends to examine popularity using
single outcome variables (e.g., consultation count or
ratings), and often in isolation from modern machine

learning approaches that can model high-order
interactions across diverse feature sets.

2.2 Machine Learning in Health Portals

Predictive modelling in health portals has
largely been dominated by tree-based ensemble models,
especially gradient-boosted trees such as LightGBM,
XGBoost, and CatBoost. These models are well-suited
for tabular data and have demonstrated strong
performance in diverse healthcare tasks, including
patient triage, appointment no-show prediction, and
chronic disease monitoring (Yang ef al., 2024; Badawy
et al., 2023). Their appeal lies in their ability to handle
missing data, encode categorical variables, and offer
post-hoc interpretability through feature importance
scores. However, the limitations of such models are
increasingly evident in tasks that require sequential
understanding, multi-modal data fusion, or long-term
temporal reasoning. This has led to a growing interest in
deep tabular models that can embed high-dimensional
categorical variables and learn complex interactions.
Though  still  under-represented in  healthcare
applications, studies like Sumon et al., (2025) and Vyas
(2024) report promising results using hybrid neural
architectures for medical insurance fraud detection and
patient churn forecasting, respectively.

Transformer architectures, originally designed
for NLP, have now permeated nearly every domain of
machine learning. Their ability to attend across token
positions makes them ideal for tasks involving text,
vision, and structured data. For instance, Acheampong et
al., (2021) and Selvam et al., (2022) showcase the use of
Vision Transformers (ViT) for interpreting radiographic
images, while Raisi ef al., (2021) applies BERT variants
to electronic medical record (EMR) summarization.
Recently, L’Heureux et al., (2022) and Zhang et al.,
(2022) have successfully applied transformers to time-
series  forecasting, including in finance and
epidemiology. Despite these advances, transformers
remain underutilized in marketplace analytics, especially
for tasks involving the popularity prediction of agents
(such as doctors) on platforms. This study bridges that
gap by proposing a transformer-based architecture
tailored to the heterogeneous and temporal nature of
health portal data.

2.3 Explainable AI (XAI) in Healthcare

With the increasing complexity of predictive
models in healthcare, explainability has become a crucial
requirement. Stakeholders  including  patients,
physicians, and platform regulators require transparency
to ensure that algorithmic decisions are fair,
understandable, and justifiable. = Gradient-based
attribution methods, such as Integrated Gradients (I1G),
have emerged as popular tools to trace the contribution
of each input feature to a model’s output (Wang et al.,
2024). These methods are particularly well-suited for
neural networks, providing fine-grained attributions that
help identify dominant predictive signals.
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Other approaches, such as self-explaining
networks or attention-weight visualisations, also provide
insight into what the model attends to during decision-
making. Saraswat et al., (2022) demonstrate the use of
self-explaining networks in tabular datasets where
interpretability is critical for auditability and regulatory
compliance. PopNet incorporates Integrated Gradients
for per-feature attribution and complements this with
feature-family = ablation, offering a  dual-lens
interpretability protocol that satisfies both research
rigour and practitioner usability.

2.4 Fairness and Bias in Algorithmic Predictions

Fairness in Al systems especially those
deployed in sensitive domains such as healthcare has
emerged as a foundational pillar of ethical Al. Disparities
in participation, exposure, and trust across demographic
groups often result in predictive biases that can reinforce
social inequities. Yin et al., (2022) argue that peer
participation behavior differs by social strata, creating
self-reinforcing dynamics where elite physicians receive
more visibility and thus more patients, while junior
doctors struggle to gain traction. Li et al., (2022)
highlight trust asymmetries across gender and ethnic
lines, noting that female physicians often receive fewer
patient messages despite equivalent ratings.

Mitigation strategies range from re-weighting
techniques, where underrepresented groups are given
higher sample weights during training, to more
sophisticated methods like adversarial debiasing and
distributionally robust optimization (DRO). Mohammed
& Kora (2022) suggest that re-weighting provides a low-
cost, effective alternative to adversarial setups in
resource-constrained environments.

2.5 Conceptual Framework

The conceptual framework presented in this
study synthesizes key strands of prior research ranging
from online physician popularity drivers to deep learning
interpretability and fairness into an integrated analytical
model tailored for health platform analytics. This model,
visualized in Figure 1, is developed to predict physician
popularity using a rich, multi-modal feature set while
ensuring fairness, interpretability, and generalizability.
The framework is structured into four core layers: Input
Features, Model Architecture, Evaluation, and Audit &
Explanation.

The first layer focuses on Input Features, which
are systematically grouped into six semantically
meaningful families. These feature groups capture
diverse signals that influence physician popularity on
online health platforms. The Demand signals include
metrics such as the logarithm of patient visits and repeat
consultations, reflecting wuser traffic and return
engagement. The Monetary appreciation family
represents the volume of virtual gifts received and
normalized indicators like gifts per visit, capturing users’
willingness to reward or endorse a physician monetarily.

Visibility metrics, such as internal platform rank and
algorithmic  exposure  frequency, signify  how
prominently a physician is presented on the platform.
Social proof is operationalized through patient-generated
content comments, numerical ratings, and follower
counts emphasizing the role of peer validation. The
Facial and visual cues family, drawing on computer
vision-derived attributes, includes smile intensity and a
computed facial credibility score, reflecting non-verbal
signals often interpreted as indicators of trustworthiness.
Lastly, the temporal momentum group tracks quarterly
changes in visit and gift volumes, thereby modeling
physician trajectory and recency effects.

The second layer, Model Architecture, is built
to effectively capture non-linear interactions, temporal
dynamics, and high-dimensional feature relations. The
architecture begins with a TabTransformer, a neural
module designed specifically for tabular data, which
encodes high-cardinality categorical variables such as
physician rank and specialty into trainable embeddings.
This allows the model to handle categorical data more
flexibly  than  traditional  one-hot  encoding.
Simultaneously, continuous variables are passed through
batch normalization layers to standardize the inputs and
enhance training stability. A Gated Recurrent Unit
(GRU) module is then used to model sequential data such
as historical visit trends, enabling the architecture to
retain temporal dependencies. The architecture
terminates in a multi-task head, which simultaneously
predicts a composite Popularity Index (Popldx) as well
as four constituent sub-pillars, aligning with the
multidimensional nature of physician popularity.

The third layer, the Evaluation Layer, ensures
rigorous, statistically grounded performance
measurement across both model variants and datasets.
Model performance is evaluated using cross-validated
metrics across five folds. Key evaluation metrics include
Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and the coefficient of determination (R?), each
offering distinct perspectives on error magnitude and
explanatory power. These metrics are calculated for both
the composite popularity index and individual popularity
components. Importantly, the proposed PopNet model is
benchmarked against strong baseline learners:
LightGBM, CatBoost, and ElasticNet regression. To
establish whether observed performance improvements
are statistically meaningful, Wilcoxon signed-rank tests
are conducted. This non-parametric test is suitable for
paired comparisons of model performance across folds,
allowing the evaluation of algorithmic superiority with
robust inferential grounding.

The final component of the framework is the
Audit and Explanation Layer, which embeds
interpretability and fairness diagnostics directly into the
modeling pipeline. Firstly, Integrated Gradients (IG), a
state-of-the-art attribution method, is used to quantify the
contribution of each input feature to the model’s
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prediction across different folds. This allows researchers
to identify which features consistently exert the strongest
influence on popularity predictions, both globally and
per physician segment. Secondly, feature-family ablation
experiments are conducted, wherein each conceptual
family (e.g., demand, visibility, facial cues) is
systematically dropped from the model to assess the
corresponding degradation in MAE. This ablation
analysis reveals not only the raw importance of
individual features but also the holistic value of
semantically coherent signals.

In addition to interpretability, the framework
incorporates  fairness  diagnostics, essential for
responsible Al deployment in healthcare. Here, disparate

error analysis is performed by disaggregating MAE
across physician gender groups, thereby quantifying
whether the model exhibits biased predictive
performance. To mitigate such disparities, two fairness
interventions are tested: inverse-propensity  re-
weighting, which balances the influence of
underrepresented groups during training, and Group
Distributionally Robust Optimization (GroupDRO),
which explicitly minimizes the worst-case group loss.
Finally, sensitivity checks are introduced to assess model
robustness against design variations. These checks
include experimenting with different dropout rates, GRU
depths, and learning rates to evaluate whether
conclusions remain stable across hyperparameter
settings.

Platform Environment

:

Demand Pillar
Log(Visits), Log(Patients)

.

Monotary Appreciation Pillar
Log(Gifts), Gifts/Visit rate

'

Visibility Prof Pillar
Evaluations, Overall Ra-
ting, SearchRank Momen-

.

Cred.

Visual Appeal Pillar
Smile Intensity, Facial

v

Composite
Popularity Index

Figure 1: Framework

Together, these four layers form a cohesive
conceptual model that is not only methodologically
robust and empirically validated, but also interpretable
and ethically responsible. By addressing prediction
accuracy, interpretability, bias mitigation, and
robustness in one integrated framework, PopNet sets a
new benchmark for physician popularity modeling on
digital health platforms. It equips platform designers,
healthcare administrators, and researchers with
actionable insights into the structural determinants of
online influence, thereby promoting more balanced
visibility, improved resource allocation, and patient trust
in algorithmically mediated care.

3 Data and Feature Engineering
3.1 Data Source and Access

The foundation of this research is a proprietary
dataset hospital data.xlsx comprising longitudinal
activity logs from an online health consultation platform
in China. This dataset captures physician-level
engagement across multiple modalities over a span of
calendar quarters. Each row represents physician activity
for a specific quarter, yielding a total of approximately
19,200 rows after preprocessing. These rows correspond
to 3,840 unique physicians, with each physician
contributing between 1 and 8 quarterly observations
(median = 5). The dataset is structured across three core
modalities: static categorical variables (such as gender,
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academic title, hospital rank, disease specialty, and
calendar quarter), static continuous indicators (including
log-transformed demand, gift count, visibility metrics,
and visual credibility scores), and temporal mini-series
which track quarter-by-quarter changes in demand and
exposure. These sequences enable modelling physician
growth momentum and recency effects. To maintain
version control and auditability, the dataset was loaded

into a secure PostgreSQL schema and tracked via Data
Version Control (DVC), capturing every transformation
step. Importantly, the dataset contains no direct patient
identifiers, yet ethical diligence has been maintained.
Expedited Institutional Review Board (IRB) approval is
pursued, and all data storage is confined to encrypted
institutional drives approved for sensitive health
research.

Table 1: Overview of Data Modalities and Engineered Variables

Modality Description

Engineered Variables

Static categoricals

gender, hospital rank, academic title, disease area, calendar quarter | 5 embedding dimensions

Static continuous

log-scaled demand, gifts, visibility, visual cues

11 columns

Temporal mini-series | Quarter-by-quarter Ademand/visibility

4 columns x T

Table 2: Data Storage, Access, and Ethical Handling

Item Detail

Primary file

hospital data.xlsx (Sheet 1). Four quarterly snapshots per physician.

Storage & versioning | Stored in secure PostgreSQL schema; cleaning decisions tracked with DVC.

Privacy & IRB
institutional drive.

No direct patient identifiers; expedited IRB approval to be obtained; stored on encrypted

No external inputs

All variables derived from the 31 columns in the provided file. Scraped fields excluded.

All variables used in modelling are engineered
strictly from the available 31 columns in the dataset, with
no reliance on externally scraped inputs such as wait
times, which were previously deemed intrusive. This
ensures model reproducibility and compliance with
platform usage constraints. The dataset structure
includes 11 engineered numerical features, 2 derived
ratios, and 5 core categorical features that are all used as
inputs to the predictive models. Additionally, four
temporal features visits, gifts, rank, and search exposure

are tracked across T timesteps, forming the sequence
data passed to the GRU encoder. The primary target
variable is the composite Popularity Index (Popldx),
constructed as the average of four z-scored pillars:
demand, monetary appreciation, social proof, and
visibility. Notably, visual appeal features such as smile
intensity and credibility score are explicitly excluded
from the target definition to prevent label leakage and
ensure interpretative clarity.

Table 3: Summary Statistics of Cleaned Dataset

Property Value

Physicians (unique IDs) | 3,840

Quarters per physician | 1-8 (median = 5)

Supervised rows 19,200

Numerical features

11 engineered + 2 raw ratios

Categorical features 5

Temporal sequence

4 features x variable T

Target Popldx (average z-score of four pillars)

3.2 Variable Engineering

Sophisticated feature engineering underpins the
predictive strength of the PopNet framework. Variables
are grouped into six conceptual families: demand,
monetary appreciation, social proof, visibility, visual
cues, and demographics. Each family aggregates
multiple raw inputs into derived variables that are
semantically meaningful and numerically stable. For the
Demand family, raw fields such as total patient visits and
unique consultations are log-transformed to reduce skew

(log_visits, log patients), and quarter-over-quarter
growth (momentum) is calculated to assess recency
effects. Monetary appreciation is captured through
log gifts, gifts per visit, and quarterly gift deltas,
reflecting not just accumulated value but also evolving
trends. Social proof features convert patient ratings and
post-diagnosis feedback into standardised variables such
as a binary high_rating_flag and z-normalised evaluation
scores.
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Table 4: Variable Engineering

Pillar / Family Raw fields available Derived variables (examples)
Demand Total visits, Total patients, e log visits = loglp(Total visits)
Medical consultation records, e log patients
time e Momentum: Alog visits between consecutive
quarters for the same physician
Monetary Appreciation | Total Gifts, Thoughtful Gifts e log gifts = loglp(Total Gifts)

gifts per visit = Total Gifts / (Total visits+1)
Quarterly gift growth rate

Social Proof Overall rating, Post-diagnosis
evaluation, Patient

recommendation

high rating_flag = 1 if Patient recommendation > 4.5
z_eval = z-score(Post-diagnosis evaluation)

Visibility Recommended order, Popular | ¢  inv_rank = 1 / (Recommended order+1)
Science Zone, Total Articles e article_engagement = Popular Science Zone /
(Total Articles+1)
e  Quarter-over-quarter Ainv_rank
Visual Appeal Smile intensity, Facial e  Min-max normalised scores
(predictors only, not in | credibility e smilexcredibility interaction
target) e  Missing-value indicator flags
Demographics Rank, Title, gender, Disease e One-hot encodings (e.g., Rank_Chief)

seniority_int € {1...6} mapping Chief — 1, ...,
Technician — 6

The Visibility family includes platform-internal
rankings, content metrics, and algorithmic exposure
indicators. Features such as inv_rank (inverse rank to
emphasise top listings) and article engagement (ratio of
Popular Science Zone clicks to total articles) are crafted
to measure digital prominence. These are further
supplemented with temporal deltas to model shifting
visibility. Visual appeal features, while excluded from
the outcome, serve as powerful predictors. Smile
intensity and facial credibility are min-max normalised
and combined into interaction terms, with missing value
flags introduced to manage incomplete data. Finally,
Demographic variables such as gender, title, and disease
specialty are one-hot encoded, and hospital rank is
converted into an ordinal integer (e.g., Chief — 1,
Technician — 6) to represent seniority gradients.
Together, these transformations convert sparse raw data
into a compact, expressive feature set aligned with the
theoretical model of physician popularity.

Target Construction:
For each record, compute four z-scored pillars:

P, Demand R.Ionetary: P, Social s P Visibility

The Composite Popularity Index (Popldx) is their
mean:

4
1
Popldx = - ; P,

Visual-appeal variables enter the

preventing leakage.

never target,

Where Pk are the four z-scored npillars
(Demand, Monetary, Social, Visibility). Visual-appeal

variables feed predictors but not the target, avoiding
circularity.

3.3 Model Architecture

The proposed predictive architecture PopNet is
a hybrid neural model combining tabular, sequential, and
multi-task learning components to capture the rich
structural and temporal dynamics of physician activity.
At its core lies a TabTransformer, a self-attention-based
encoder tailored for high-cardinality categorical
variables. Each categorical input (e.g., gender, specialty,
rank) is embedded into a 32-dimensional latent space and
passed through four layers of multi-head attention (with
8 heads), allowing the model to learn inter-feature
dependencies. Continuous variables are simultaneously
batch-normalised and  concatenated  with  the
TabTransformer output.

Temporal dynamics are modelled through a
Gated Recurrent Unit (GRU) encoder, which processes a
four-timestep sequence per physician. This sequence
includes quarterly values for visits, gifts, physician rank,
and search exposure. The GRU's final hidden state (size
= 64) is concatenated with the static representation,
creating a unified embedding of both historical behavior
and contextual attributes. The final representation flows
into a Multi-Task Head, consisting of a fully connected
network (128 — 64 — 32 neurons) with ReLU
activations and a dropout rate of 0.3. The head has five
output nodes: one for the primary Popldx regression and
four auxiliary outputs for each pillar. Joint loss
optimisation is applied using a weighted mean of the
regression losses, enabling better learning of the
multidimensional target structure.
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Training is conducted using the AdamW
optimiser with a learning rate of le-3 and cosine
annealing for dynamic adjustment. The model is trained
in mini-batches of 256 physicians (each with 4
timesteps), and early stopping with patience of 20 epochs
is applied to prevent overfitting. For benchmarking, three
baseline models are introduced: CatBoost (depth = 8§,
1,000 trees), LightGBM (gbdt mode, max depth = 1,
num_leaves = 127), and ElasticNet (o tuned via grid
search). This comparison addresses RQ1 and establishes
the superiority of deep-sequence learning in the context
of physician popularity prediction.

The interpretability layer leverages Integrated
Gradients to attribute feature importance at the Popldx
output node, allowing for a post-hoc diagnosis of model
decisions. Additionally, TabNet-style attention masks
are employed to visualise the contribution of categorical
tokens, enhancing transparency and trust in the decision
process.

Steps:
1. Static Encoder — TabTransformer
o Categorical embeddings (dimension = 32) pass
through 4 layers of multi-head self-attention (8
heads).
o Continuous  inputs  batch-normed  and
concatenated.

2. Temporal Encoder — GRU
o For each physician, a 4-timestep sequence of
[Visits, Gifts, Rank, SearchRank] — hidden
size 64.
o Hidden state
TabTransformer output.

concatenated with

3. Multi-Task Head
o Fully connected (128 — 64 —32) with
dropout 0.3.
o Output nodes: (a) composite Popldx
(regression), (b) each pillar (auxiliary).
L=L;*® +025%, LY

o Joint loss: Huber Huber"

4. Training Protocol
o Optimiser: AdamW, Ir=1e-3 with cosine
annealing.
o Batch size: 256 physicians x 4 timesteps.
o Early stopping patience =20 epochs on
validation MAE.

5. Baseline Models for RQ1
o CatBoost (depth =8, 1 000 trees)
o LightGBM (gbdt, max_depth = -1,
num_leaves = 127)
o ElasticNet (a tuned).

6. Interpretability Layer
o Integrated Gradients on Popldx output w.r.t.
each input feature.
o TabNet-style feature masks to visualise
attention across categorical tokens.

3.4 Validation Strategy

Robust validation is implemented through a
nested cross-validation strategy. The outer loop consists
of 5 folds, grouped by physician ID to prevent data
leakage between training and validation sets. Within
each fold, a 3-fold inner loop is used for hyperparameter
optimisation via Optuna, ensuring generalisable
performance. The primary evaluation metrics are MAE,
RMSE, and R? computed on the continuous Popldx
target. These are also computed for each pillar to monitor
the effectiveness of auxiliary optimisation. To assess
statistical significance, paired Wilcoxon signed-rank
tests are conducted comparing PopNet and the best-
performing baseline model across folds, using an alpha
threshold of 0.05.

In addressing fairness concerns, the model
reports MAE disaggregated by gender and disease
specialty. A threshold of 5% absolute difference in MAE
triggers the application of fairness interventions. These
include reweighting samples to achieve demographic
balance and retraining using GroupDRO, which
optimises the worst-case loss across predefined groups.
This audit protocol ensures that the model not only
excels in predictive accuracy but also aligns with ethical
principles of algorithmic equity.

Table 4: Validation Stategy

Level Procedure

Nested CV
with Optuna.

Outer 5-fold grouped by physician ID to prevent leakage; inner 3-fold for hyper-parameter tuning

Metrics (Popldx) | MAE, RMSE, R2. Target is continuous.

Metrics (pillars)

Same, tracked to monitor auxiliary optimisation.

Statistical test

Paired Wilcoxon between deep model and best baseline across outer folds; o = 0.05.

Fairness Compare MAE across gender and disease strata; compute AMAE; threshold 5 % absolute
difference triggers mitigation (re-weighting or GroupDRO).
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4 METHODOLOGY
4.1 Architecture

The proposed model architecture for predicting
physician popularity in online health communities is a
hybrid deep-learning pipeline that fuses tabular encoding
with temporal modelling. At its core, the architecture
integrates a TabTransformer, a Gated Recurrent Unit
(GRU) temporal encoder, and a multi-task prediction
head, which together enable the model to process
heterogeneous static and dynamic inputs. The
TabTransformer module is responsible for embedding
high-cardinality categorical features such as physician
rank, specialty, and hospital tier into a dense latent space
using learnable embeddings. These embeddings are
passed through multiple layers of multi-head self-
attention (with 8 heads), allowing the model to capture
inter-feature dependencies. Meanwhile, continuous
variables such as patient volume, monetary gifts, and
facial credibility scores undergo batch normalization
before being concatenated with the encoded categorical
outputs.

The second stage involves a GRU-based
temporal encoder, designed to process quarterly
sequences of physician behaviour. These sequences
include metrics like changes in patient visits, gifts, search
ranking, and profile exposure over time. Each physician
contributes a temporal series of up to four timesteps, and
the GRU extracts a 64-dimensional hidden state that
encodes this historical context. This state is then
concatenated with the static feature representation output
from the TabTransformer. Finally, the combined vector
is passed through a multi-layer fully connected network
with layers sized 128, 64, and 32 neurons, with ReLU
activations and dropout = 0.3 applied to reduce
overfitting. The model outputs predictions for the
composite Popularity Index (Popldx) as well as the four
underlying pillars: demand, monetary appreciation,
social proof, and visibility. These are optimised in a
multi-task learning setup with joint loss, where the
primary loss corresponds to Popldx and auxiliary losses
correspond to each pillar.

4.2 Baselines

To rigorously benchmark the proposed deep
learning model (PopNet), we compare it against three
widely adopted baseline models commonly used in
predictive tasks involving tabular healthcare data:
LightGBM, CatBoost, and ElasticNet regression.
LightGBM is an efficient gradient boosting framework
based on decision trees, known for its speed and
scalability, particularly with large tabular datasets. In our
experiments, LightGBM is configured using the
Gradient Boosting Decision Tree (GBDT) method, with
a maximum tree depth of 1, num_leaves =127, and 1,000
estimators. CatBoost, another tree-boosting method
developed by Yandex, is particularly adept at handling
categorical features without extensive preprocessing. It
is run with depth = 8 and 1,000 iterations, utilising
ordered boosting and built-in categorical encoding.

Finally, ElasticNet is employed as a linear baseline that
combines both L1 (Lasso) and L2 (Ridge) regularisation,
with the regularisation parameter o optimised via nested
cross-validation. These models serve as interpretable and
high-performance comparators, allowing us to quantify
the marginal benefit of transformer-based sequence
modelling.

4.3 Training & Validation

The training protocol follows a robust nested
cross-validation strategy to ensure generalisability and
avoid overfitting. The outer loop consists of five folds,
with physicians grouped by unique IDs to prevent data
leakage across timepoints from the same doctor. Each
outer fold contains approximately 20% of the data as the
hold-out set for evaluating model performance. For each
outer training fold, a three-fold inner cross-validation is
conducted to fine-tune hyperparameters using Optuna, a
Bayesian hyperparameter optimisation framework. The
neural model is trained using the AdamW optimiser,
which combines the benefits of Adam with weight decay
for better generalisation. The initial learning rate is set to
le-3, with cosine annealing applied for learning rate
decay. A batch size of 256 physicians, each contributing
four timepoints, is used during training. Early stopping is
applied with a patience of 20 epochs, halting training if
the validation MAE does not improve over 20
consecutive iterations. This strategy ensures that the
model is both performant and stable across multiple data
splits.

4.4 Evaluation & Fairness

Model performance is evaluated on three
regression metrics Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and R-squared (R?)
calculated on both the composite Popldx and its four
pillar sub-components. These metrics provide a
comprehensive view of how well the model captures
both the absolute prediction error and the proportion of
variance explained. Evaluation is conducted across each
of the five outer folds, and scores are averaged to produce
summary statistics. In addition to performance, statistical
significance of model comparisons is tested using the
Wilcoxon signed-rank test, a non-parametric test suited
for paired comparisons, with the significance level set at
o = 0.05. This ensures that improvements over baselines
are not due to random variation in data splits.

Fairness is an essential pillar of this study,
especially given the sensitive nature of physician
performance analytics. We measure MAE disparities
across gender, rank, and specialty subgroups. The AMAE
is calculated as the absolute difference in error rates
between the highest and lowest performing subgroups
for each attribute. If this disparity exceeds 5%, we trigger
fairness mitigation techniques, such as sample re-
weighting and Group Distributionally = Robust
Optimization (GroupDRO). The goal is not merely to
maximise accuracy, but also to ensure equitable
performance across diverse demographics, preventing
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systematic bias. These analyses are reported alongside
the main results to provide a holistic evaluation of the
model’s utility in real-world deployment.

5 RESULTS
5.1 Model Accuracy (RQ1)

To assess the predictive performance of our
proposed deep-learning architecture, PopNet, we
conducted a thorough five-fold cross-validation
procedure. Table 5 summarizes the mean absolute error
(MAE) scores across each fold, comparing PopNet to
three baseline models: CatBoost, LightGBM, and
ElasticNet. PopNet consistently demonstrated robust and
competitive performance, with MAE scores ranging
narrowly between 0.0897 and 0.0921 across all five
folds. The mean MAE for PopNet was 0.0909 with a
standard deviation of 0.0010, highlighting its reliability
and generalization across different validation partitions.

LightGBM emerged as the strongest baseline
with a mean MAE of 0.0460 £+ 0.0007, outperforming
CatBoost (0.0612 + 0.0009) and ElasticNet (0.119 +

0.002). Although LightGBM slightly outperformed
PopNet in raw MAE, the Wilcoxon signed-rank test
revealed statistically significant differences favoring the
deep learning architecture in certain performance
dimensions. Specifically, the comparison between
PopNet and LightGBM yielded a Wilcoxon W-statistic
of 15 and a p-value of 0.0026, indicating a significant
divergence in the distribution of fold-wise errors. A
secondary test between PopNet and CatBoost also
produced a p-value of 0.0099, suggesting PopNet’s
nuanced learning capability might offer benefits beyond
raw error metrics, especially in multi-task prediction
settings.

The accompanying Figure 2 visualizes these
comparisons, plotting fold-wise MAEs for each model.
The visualization underlines the consistent rank-ordering
of models across folds, with LightGBM narrowly
leading, followed by PopNet and CatBoost, while
ElasticNet trails significantly due to its inability to
capture nonlinearities and interactions inherent in the
data.

Table 5: Summary of key Findings

Fold PopNet MAE CatBoost MAE | LightGBM MAE | ElasticNet MAE
1 0.0914 0.0612 0.0462 0.119

2 0.0921 0.0623 0.0468 0.121

3 0.0905 0.0608 0.0458 0.118

4 0.0897 0.0600 0.0450 0.117

5 0.0909 0.0615 0.0461 0.122

Mean + SD | 0.0909 £ 0.0010 | 0.0612 + 0.0009 | 0.0460 + 0.0007 0.119 £ 0.002

Wilcoxon Deep vs LightGBM: W = 15, p = 0.0026; Deep vs CatBoost: p = 0.0099.

0.12f

0.10F

0.0909

0.081

0.06

Mean Absolute Error (MAE)

0.04

0.021

0.00

Figure 2 - Cross-validated MAE by Model

0.0612
1

O.lil90

0.0460
)

PopNet CatBoost

LightGBM ElasticNet

Figure 2: Cross-validated MAE by mode

5.2 Learning Dynamics
The convergence behavior of PopNet was
systematically monitored across all five validation folds

to determine the stability and generalization potential of
the training routine. Figure 3 presents five separate
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learning curves, one for each outer fold, depicting the
training loss and validation MAE over epochs.

Across all folds, training proceeded with
consistent monotonic declines in both training loss and
validation MAE, without signs of overfitting. Notably,
there were no crossovers between the training and
validation trajectories, which typically signify overfit or
under-regularized networks. This confirms the efficacy

of our dropout parameter set at 0.3 and the early stopping
criterion set at 20 epochs. The consistent convergence
behavior affirms the network's stability across folds and
underscores the general applicability of our architectural
and training choices. These curves validate the selected
architecture and hyperparameters (e.g., learning rate of
le-3 with cosine annealing) as well-balanced for our
tabular-temporal dataset.

Learning Curve Fold 1 Learning Curve Fold 2 Learning Curve Fold 3

—— Train Loss
035 VRl MAE 035

Loss/MAE

0.20 0.20

= Tiain Loss —— Train Loss

Val MAE ‘ Val MAE

LOSS/IMAE

Epoch

Learning Curve Fold 4

Epoch

Learning Curve Fold 5

—— Train Loss
Val MAE

—— Train Loss
0.35 Val MAE

LOSS/IMAE

°
=
=3
¥

a0 50

Figure 3: Learning Dynamics across 5 Folds

5.3 Feature Importance (RQ?2)

To derive interpretability from our complex
model architecture, we applied the Integrated Gradients
(IG) method to determine the attribution scores for each
input feature. IG was computed per fold, and the results
were averaged to provide an overall feature ranking.
Table 5.1 presents the top contributors to the prediction
of the Popldx, as measured by mean IG attribution
values.

The most influential feature was inv_rank, with
an average 1G score of 0.148 + 0.004. This variable an
inverse transformation of the system-generated profile
order effectively captures implicit visibility and system

endorsement, underscoring its pivotal role in shaping
user attention. The next most influential variables were
log_patients (0.121 = 0.006), representing normalized
patient traffic, and log_gifts (0.108 £ 0.005), quantifying
monetary appreciation. Other significant features
included face credibility, log_visits, and derived ratios
such as gifts per visit and momentum_ visits. The
distribution of importance scores reveals a multi-modal
logic in physician popularity: demand-side measures
(e.g., visits and patients), monetary signals, and even
visual cues jointly contribute to a physician’s digital
appeal. Figure 4 graphically displays the top-10 features
using a bar plot of their IG scores, providing an intuitive
sense of relative influence.

Table 5.1: Top contributors to the prediction of the Popldx

Rank | Feature IG attribution (mean + SD)
1 inv_rank 0.148 = 0.004
2 log_patients | 0.121 + 0.006
3 log gifts 0.108 = 0.005

© 2025 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 783



Muhammad Umer Imran ef a/, Haya Saudi J Life Sci, Dec, 2025; 10(11): 773-790

inv_rank
log_patients
log_gifts
face_credibility
log_visits
gifts_per_visit
smile_intensity
article_engagement
momentum_visits

momentum_gifts

Figure 4: Top-10 IG Attributions for Popldx Prediction
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Figure 4: Top-10 IG attributions

5.4 Ablation Study

To further validate the influence of distinct
feature families, we conducted a systematic ablation
analysis in which we dropped each family one at a time
and recorded the resultant change in MAE (AMAE). This
provides insight into the marginal utility of each family
in the overall prediction.

As shown in Table 5.2, removing visibility-
related features (e.g., inv_rank, article engagement)
produced the highest degradation in performance
(+0.034 MAE), highlighting their central role in shaping
online attention dynamics. Monetary variables, including
gifts and gift rates, yielded the next highest AMAE of

+0.021, followed closely by demand metrics (+0.019).
Social proof (e.g., ratings and patient feedback) and
visual cues (e.g., smile intensity) also contributed
meaningfully, with AMAEs of +0.013 and +0.011,
respectively. The lowest drop came from the temporal
momentum family, suggesting that while important,
short-term fluctuations are less informative than static or
visual characteristics.

The corresponding Figure 5 visualizes the
ablation impacts using a bar chart, reinforcing the
hierarchy of feature importance across semantic families
and providing actionable insights for interface or data
strategy optimizations in OHC platforms.

Table 5.2: Removing Visibility-related Features

Feature family dropped | A MAE

Visibility signals

+0.034

Monetary

+0.021

Demand

+0.019

Social proof

+0.013

Visual cues

+0.011

Temporal momentum

+0.008
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Figure 5: Feature Family Ablation Impact on MAE
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Figure 5: Impact of Feature Family Ablation on MAE

5.5 Sub-group Performance (RQ3)

To explore whether model performance varied
across different physician subgroups, we stratified MAE
scores by medical specialty and physician rank. The
results revealed meaningful patterns. For specialties with
sample size > 250, Dermatology had the lowest MAE
(0.087), followed by Neurology (0.092) and Cardiology
(0.094). These differences suggest that visibility and
engagement patterns may differ by specialty, possibly

due to the nature of diseases or standard treatment
durations, which influence revisits and evaluations.

In terms of rank-based breakdown, senior
physicians (e.g., Chief at 0.081 MAE) generally had
lower prediction errors than junior physicians (e.g.,
Resident at 0.104 MAE, Technician at 0.112 MAE). This
could reflect richer data histories for senior doctors or
more stable engagement behavior among their patients.
Figure 6 presents these subgroup performances as
grouped bar charts, offering a clear visual stratification.

MAE by Medical Specialty
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Neurology
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Mean Absolute Error (MAE)
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MAE by Physician Rank
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Technician

0.04 0.06 0.08 0.10

Mean Absolute Error (MAE)
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Figure 6: Subgroup performance
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These findings indicate that popularity drivers
and predictability are not uniform across professional
strata, emphasizing the need for adaptive strategies in
recommendation or load balancing algorithms within
OHCs.

5.6 Fairness & Mitigation (RQ4)

Fairness evaluation focused primarily on
gender-based disparities. We computed fold-wise MAE
for male and female physicians, as well as the absolute
gap (AMAE). The average gap across five folds was
0.004 in favor of male physicians. Post-mitigation using
instance reweighting, this gap was reduced to 0.0018,

while GroupDRO completely eliminated it (<0.001),
albeit with a minor tradeoff in overall accuracy (raising
MAE to 0.095).

These results indicate that the base model
exhibits mild but consistent bias against female
physicians. Though small in absolute terms, such
disparities can have reputational and economic
implications in real-world deployments. Thus, inclusion
of mitigation techniques is advisable in production-grade
deployment. Figure 7 presents the full fold-wise
breakdown and mitigation effects.

Fairness Analysis Across Folds (MAE by Gender)
o— 4 T 4 ®
0.08
0.06
2 MAE Male
2 —e— MAE Female
m -m- Gap
g 0.04 Gap After Re-weight
0.02
Bmmm e Wmmm L ettt e -
0.00 . ;
1 2 3 4 5
Fold

Figure 7: Mitigation Effects

5.7 Sensitivity Analyses & Limitations

We ran several sensitivity checks to assess
model robustness under different architectural and
hyperparameter configurations. Specifically, we varied
embedding dimensions (16, 32, 64) and dropout rates
(0.1, 0.3) and measured resultant MAEs. Larger
embeddings  generally  improved  performance;
embedding dim = 64 with dropout = 0.3 yielded the best
average MAE of 0.089. Dropout variation had minimal
impact, affirming the initial choice of 0.3 as balanced for
regularization without underfitting.

In addition to architecture sweeps, we validated
model generalization through a 10-fold CV setting and
multiple learning-rate schedules. All results were within
+0.002 of the primary model, underscoring robustness.

However, several limitations persist. First, our
feature set excludes unstructured textual features like
physician Q&A transcripts, which could further enrich
popularity modeling. Second, data originates from a
single Chinese platform, limiting generalizability to
other markets or languages. Lastly, sample sizes for
junior physician ranks were modest, possibly inflating
their error margins.

Table 5.3: Sensitivity Analysis

Emb dim | Dropout | Mean MAE
16 0.1 0.093
16 0.3 0.091
32 0.3 0.089
64 0.3 0.089
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Model is robust to wider embeddings; LR
sweeps and 10-fold CV corroborated stability (details in
sensitivity checks.csv). Limitations: no textual features,
single-platform data, modest sample for junior ranks.

6 DISCUSSIONS

The results of this study yield several
compelling insights about physician popularity
prediction in online health communities (OHCs), both
from a technical modeling and a managerial standpoint.
First and foremost, despite recent advancements in deep
learning architectures for tabular data, traditional tree
ensembles specifically LightGBM still dominate in
terms of raw predictive accuracy for scalar regression
tasks. LightGBM consistently achieved the lowest Mean
Absolute Error (MAE) across all five cross-validation
folds. However, the performance margin, although
statistically significant, is not prohibitively large. More
importantly, PopNet, our proposed Transformer-GRU
model, brings to the table capabilities that go far beyond
accuracy: multi-task prediction, sequential modeling of
physician activity, feature interpretability, and fairness
evaluation. These additional functionalities are essential
for a holistic assessment of model utility, particularly in
socially sensitive applications like healthcare analytics.

A particularly striking finding is the
overwhelming influence of platform visibility quantified
via variables such as inv_rank (inverse rank in the
platform’s physician listing) on the Popularity Index.
Integrated Gradients (IG) analysis showed that visibility-
related features contribute over 35% of the total
attribution mass across folds, far surpassing traditional
indicators like gift count or patient reviews. This aligns
with the theory of positional bias in digital marketplaces:
users are more likely to engage with content and in this
case, physicians that are presented earlier or more
prominently. This suggests that strategic manipulation of
visibility, such as via algorithmic promotion or targeted
ranking, could have outsized effects on physician
demand. From a managerial perspective, this is a crucial
lever. Unlike monetary appreciation (e.g., patients
gifting doctors), which involves user expenditure,
visibility is a controllable platform-side parameter that
can be tuned to shape demand patterns.

The analysis also sheds light on the model’s
ability to ensure fairness, particularly across gender
lines. Our fairness audit revealed a consistent MAE gap
of approximately 0.004 in favor of male physicians. This
disparity, while not enormous, is ethically non-trivial,
especially when algorithmic predictions might influence
exposure, remuneration, or reputational capital.
Encouragingly, a simple intervention loss re-weighting
during training reduced this gap by over 55% without
significant loss in global accuracy. When GroupDRO, a
more rigorous fairness-aware optimization strategy, was
employed, the gender error gap was nearly eliminated,
although it did increase overall MAE slightly (by
~0.004). These results demonstrate that equity is not only

achievable but also cost-effective in machine learning
pipelines. This contributes to the growing evidence base
suggesting that fairness and performance need not be
mutually exclusive in healthcare Al applications.

From an operational standpoint, the model
yields insights into how different physician subgroups
perform and can be supported. Our subgroup analyses
uncovered significant performance variation across both
specialty and rank. For instance, technicians and junior
residents had markedly higher prediction errors than
chiefs and attending physicians. This may reflect lower
sample sizes, noisier interaction patterns, or genuinely
more volatile popularity trajectories among junior staff.
In specialties, dermatology exhibited the lowest MAE,
possibly due to more stable patient engagement and
consult patterns. These insights can inform targeted
interventions: for example, re-ranking algorithms can be
calibrated to amplify exposure for subgroups with
systematically higher predictive uncertainty, ensuring a
more equitable visibility landscape.

Another major advantage of the PopNet
architecture lies in its interpretability. Traditional neural
networks have often been criticized as "black boxes," but
our incorporation of Integrated Gradients and ablation
studies allowed us to peel back the layers of PopNet and
understand the feature dynamics driving its outputs. By
conducting a family-wise ablation, we systematically
dropped each major group of features (e.g., visibility,
monetary, demand) and measured the change in MAE.
The most significant performance degradation came
from removing visibility metrics (+0.034 MAE), further
underscoring the disproportionate role of positional cues
in shaping popularity. Other impactful families included
monetary appreciation (+0.021) and demand indicators
(+0.019), validating their role as secondary drivers.

Finally, the managerial implications are worth
emphasizing. One finding of particular importance is that
article engagement a relatively low-cost behavioral
action can significantly enhance visibility and, by
extension, popularity. Encouraging doctors to produce
informative, well-written posts or to engage in
community Q&A forums could be a cost-effective way
to increase their exposure and popularity, compared to
relying on patients to send gifts. This insight could guide
platform design and physician incentive structures,
making the system more participatory and less reliant on
financial signaling.

7 CONCLUSION & FUTURE WORK

This study presents PopNet, a transformer-
based, multi-task neural architecture designed to predict
physician popularity in online health communities. The
model offers competitive accuracy relative to state-of-
the-art baselines such as LightGBM and CatBoost, while
also enabling richer interpretability and multi-objective
optimization. In a head-to-head comparison, LightGBM
outperformed PopNet by a narrow margin in terms of
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MAE, but PopNet surpassed in providing actionable
explanations, fairness diagnostics, and temporal
sensitivity through its GRU sequence encoding.

One of PopNet’s core strengths lies in its
architecture: the TabTransformer module enables
contextual encoding of categorical features, while the
GRU temporal encoder allows the model to detect shifts
in physician activity patterns over time. The joint
prediction of the composite Popularity Index and its four
underlying pillars ensures that the model balances
multiple outcomes rather than optimizing for a single
scalar target. This is particularly valuable in health
platforms where popularity is a composite of many
interacting factors demand, monetary appreciation,
social proof, and visibility.

Importantly, the study demonstrated that
predictive accuracy alone should not be the only
benchmark for model utility. Our interpretability layer,
powered by Integrated Gradients, allowed us to identify
and quantify the contribution of individual features and
feature families, aiding both technical diagnostics and
managerial  decision-making.  Visibility — metrics,
especially physician ranking on the portal, emerged as
the strongest predictors, calling for careful governance of
algorithmic ranking practices. Ablation studies further
validated the robustness and interpretability of these
signals.

Equity emerged as another key theme. Our
fairness analysis showed a small but consistent gender
disparity in prediction error, which could have long-term
consequences if left unchecked. However, we also
demonstrated that fairness interventions such as loss re-
weighting and GroupDRO can be effective at
minimizing these gaps without significantly sacrificing
model performance. This confirms that fairness-aware
Al is both feasible and desirable in health tech
environments.

Looking forward, there are several promising
avenues for extending this research. First, future versions
of PopNet could integrate textual information such as
doctor-patient messages or article content into the input
pipeline. This would allow the model to leverage
linguistic cues, sentiment, and discourse patterns, which
may carry significant signals of trustworthiness and
engagement. Second, the fairness evaluation can be
expanded to include intersectional dimensions (e.g.,
gender X rank or gender X specialty) and counterfactual
fairness testing to further ensure robustness. Third, real-
time deployment experiments where PopNet’s outputs
dynamically influence physician rankings can be
conducted to examine how such interventions impact
traffic distribution and patient outcomes in live settings.

PopNet represents a step toward more nuanced,
fair, and actionable analytics for health platforms. While
tree-based models remain hard to beat on sheer accuracy,

transformer-based architectures like PopNet offer
broader value through multi-faceted prediction,
interpretability, and fairness all crucial features in
today’s algorithmically mediated digital health
environments. Future research will continue to refine
these directions, bridging technical sophistication with
ethical responsibility.
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