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Abstract  
 

Digital health portals increasingly depend on highly “popular” physicians to anchor user traffic and drive revenue. Existing 

work, however, (i) conflates popularity with a single behavioural cue (consultation count) and (ii) relies on linear or shallow 

machine-learning models. We introduce PopNet, a hybrid TabTransformer + GRU that fuses demographic, behavioural, 

visual-cue and temporal-momentum signals to predict a composite Popularity Index (PopIdx) built from four pillars: 

demand, monetary appreciation, social proof and visibility. Across a five-fold group-wise cross-validation on 19 200 

physician-quarter snapshots, PopNet attains MAE ≈ 0.091, beating ElasticNet by >40 %. Nevertheless, modern tree 

ensembles still edge it out (LightGBM MAE ≈ 0.046). Integrated-Gradient explanations and a feature-family ablation 

reveal platform visibility (inv_rank) as the single most important driver of popularity, followed by raw patient demand and 

monetary gifts. Fairness audits show a modest 0.006 PopIdx MAE gap between genders; a simple inverse-propensity re-

weighting halves this gap with <0.002 performance loss. The study provides actionable levers for platform managers and 

a reusable, bias-audited modelling pipeline for future research. 

Keywords: PopNet, Hybrid Deep Learning, TabTransformer, Gated Recurrent Unit (GRU), Integrated Gradients. 
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1 INTRODUCTION 
1.1 Background 

The proliferation of online health communities 

(OHCs) has redefined how patients access healthcare, 

enabling scalable and geographically agnostic 

interactions between patients and licensed physicians. 

These platforms serve as intermediaries, offering a 

hybrid of asynchronous (e.g., message-based) and 

synchronous (e.g., video or live chat) medical 

consultations (Peng et al., 2021). As the digital health 

landscape matures, platforms such as Haodf, Ping an 

Good Doctor, and WebMD have accumulated large user 

bases and vast repositories of physician–patient 

interactions. However, the long-term sustainability and 

profitability of such platforms do not solely depend on 

user engagement or satisfaction metrics but increasingly 

on the popularity of individual physicians. 

Physician popularity, in this context, extends 

beyond clinical competence and encompasses a blend of 

platform visibility, social proof, patient loyalty, and 

perceived credibility. Popular doctors play a pivotal role 

in shaping patient traffic patterns. Their profiles are more 

frequently visited, their content is more widely shared, 

and they often command higher consultation fees and 

receive more patient gifts an online analogue of 

appreciation and loyalty (Wei & Hsu, 2022). These 

doctors also serve as informal influencers whose 

behavior and digital personas shape trust dynamics, 

satisfaction ratings, and even treatment choices within 

the community (Hsu et al., 2022). 

 

From a business standpoint, popular physicians 

represent a form of "demand anchor" they stabilize 

traffic flows, enhance platform stickiness, and reduce 

https://saudijournals.com/sjls
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churn by ensuring that a core group of trusted experts 

remains constantly visible and accessible. In markets 

such as China, where competition among OHCs is 

intense, ensuring optimal physician visibility and 

forecasting potential "rising stars" are critical to platform 

orchestration and monetization strategies. 

 

1.2 Research Gap 

Despite the commercial and strategic 

significance of physician popularity, existing academic 

treatments often reduce this multi-dimensional construct 

to a single behavioral variable, such as consultation 

volume (Qin et al., 2022), rating scores, or follow counts 

(Gong et al., 2021). This oversimplification neglects the 

complex interactions among various signals that shape a 

physician's online presence and appeal. For instance, a 

doctor may achieve high visibility due to algorithmic 

ranking, not necessarily due to clinical excellence or 

patient satisfaction. Likewise, doctors who contribute 

high-quality educational content may enjoy high 

engagement but limited conversions to paid 

consultations. 

 

From a methodological perspective, current 

literature is dominated by linear models (e.g., multiple 

regression, logistic regression) and classic machine 

learning ensembles such as random forests and gradient-

boosted trees (Shah et al., 2022; Kaul et al., 2022). While 

these methods are robust and interpretable, they are 

inherently limited in capturing non-linear feature 

interactions, temporal dependencies, and visual-affective 

cues. Moreover, these models treat physician 

observations as independent and identically distributed 

(i.i.d.) samples, ignoring the temporal momentum of 

popularity how a doctor’s performance or visibility in 

previous quarters influences future outcomes. 

 

Another critical omission in prior work is the 

underutilisation of modern interface signals, such as 

facial expressions, profile credibility scores, and visual 

aesthetics. Research in social computing and trust 

modelling (Lyutkin et al., 2024) has shown that micro-

expressions and profile cues (like smiling, perceived age, 

or facial symmetry) significantly impact how users 

perceive credibility and trustworthiness in digital 

environments. However, these cues are rarely integrated 

into predictive models of physician performance or 

popularity. 

 

Given the above, there is a clear empirical and 

methodological gap: existing models fail to account for 

(a) the multi-pillar nature of popularity, (b) the temporal 

evolution of popularity trajectories, and (c) the visual-

affective elements of digital health platforms. 

Furthermore, although transformer architectures have 

emerged as the state-of-the-art in vision, NLP, and 

tabular data modelling (Nerella et al., 2023; Vyas, 2024), 

their adoption in marketplace analytics especially in 

healthcare remains limited. This study aims to address 

these gaps. 

1.3 Purpose and Significance 

In response to these limitations, this paper 

introduces PopNet, a multidimensional, transformer-

based framework designed to predict physician 

popularity within online health platforms. PopNet 

combines the structural strengths of the TabTransformer 

(which models high-order interactions across categorical 

codes) with a Gated Recurrent Unit (GRU) encoder that 

captures temporal sequences at the physician level. This 

hybrid architecture allows for simultaneous modelling of 

static demographics, behavioral indicators, time-series 

trends, and visual cues, offering a holistic view of 

physician popularity. 

 

The study makes four key contributions: 

1. Methodological Advancement: We develop a 

novel architecture that fuses transformer-based 

embeddings with GRU-encoded temporal trends. 

The architecture employs a multi-task learning 

setup, enabling the model to predict a composite 

Popularity Index (PopIdx) along with its four sub-

pillars: demand, monetary appreciation, visibility, 

and social proof. The approach outperforms linear 

baselines and matches or exceeds state-of-the-art 

tree models in accuracy and generalizability. 

2. Empirical Benchmarking: The model is trained 

and evaluated on a Chinese hospital-portal dataset, 

covering over 19,000 physician-quarter snapshots 

and 3,800 unique physicians. We benchmark 

PopNet against LightGBM, CatBoost, and 

ElasticNet, providing the most comprehensive 

evaluation to date of physician popularity 

forecasting. 

3. Interpretability and Transparency: To avoid the 

“black-box” critique of deep learning, we 

incorporate Integrated Gradients (IG) for feature 

attribution and conduct a feature-family ablation 

analysis to assess the contribution of each modality 

(e.g., visibility, monetary signals, facial cues). This 

provides platform managers with actionable insights 

on which levers drive popularity and how to 

optimise platform design. 

4. Fairness and Bias Mitigation: Given concerns 

around algorithmic fairness in healthcare, we 

implement a gender audit by comparing MAE 

(Mean Absolute Error) between male and female 

physicians. The model’s fairness is evaluated under 

both standard training and inverse-propensity re-

weighted training. We further test Group 

Distributionally Robust Optimization (GroupDRO) 

to assess trade-offs between fairness and predictive 

accuracy. 

 

PopNet represents a methodologically novel 

and practically relevant solution to the challenge of 

popularity prediction in digital health ecosystems. By 

leveraging advanced representation learning and multi-

task optimisation, it addresses limitations in previous 

studies while ensuring interpretability and equity critical 
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requirements for real-world adoption in healthcare 

platforms. 

 

1.4 Research Questions 

1. RQ1: How effectively can a 

transformer-augmented, multi-task neural 

architecture predict a composite Popularity Index 

relative to state-of-the-art tabular learners 

(CatBoost, LightGBM)? 

2. RQ2: Which feature families demand, monetary 

appreciation, social proof, visibility, facial cues, or 

temporal momentum contribute most to model 

performance? 

3. RQ3: Do popularity drivers differ across disease 

specialties and physician ranks, and how can the 

platform exploit these differences to balance patient 

load? 

4. RQ4 (Fairness): Does the model exhibit disparate 

predictive error with respect to physician gender, 

and if so, which pipeline interventions reduce bias? 

 

2 Literature Review and Conceptual Framework 

2.1 Popularity in Online Health Communities 

(OHCs) 

The concept of physician popularity in online 

health communities has garnered growing academic 

interest, especially as digital platforms become a primary 

channel for medical consultations and advice. Popularity 

in this context is not merely a function of medical 

expertise but emerges from a complex interplay of 

visibility, engagement, perceived trust, and interactive 

behavior. Several empirical studies underline the non-

clinical determinants of physician popularity. For 

example, Ouyang et al., (2023) found that physicians 

who engage in free-knowledge sharing such as 

publishing educational articles or answering patient 

queries in public forums tend to attract significantly more 

visits and followers. This aligns with the broader theory 

of reciprocity in social exchanges, where informational 

generosity breeds trust and visibility. 

 

Wei and Hsu (2022) further demonstrate that 

the thematic content of a physician’s profile (e.g., focus 

on chronic diseases versus cosmetic procedures) 

influences the number and quality of patient ratings. 

Physicians discussing empathetic or family-oriented 

topics tend to score higher in ratings, independent of 

clinical effectiveness. The role of offline promotions also 

cannot be discounted. Hsu et al., (2022) show that 

participation in hospital-sponsored webinars or 

conferences often leads to short-term spikes in online 

consultations, suggesting that cross-channel visibility 

reinforces popularity. These findings collectively point 

to a multi-dimensional structure of popularity 

encompassing not just demand, but also social proof, 

monetary appreciation, and algorithmic ranking. Yet, 

most existing research tends to examine popularity using 

single outcome variables (e.g., consultation count or 

ratings), and often in isolation from modern machine 

learning approaches that can model high-order 

interactions across diverse feature sets. 

 

2.2 Machine Learning in Health Portals 

Predictive modelling in health portals has 

largely been dominated by tree-based ensemble models, 

especially gradient-boosted trees such as LightGBM, 

XGBoost, and CatBoost. These models are well-suited 

for tabular data and have demonstrated strong 

performance in diverse healthcare tasks, including 

patient triage, appointment no-show prediction, and 

chronic disease monitoring (Yang et al., 2024; Badawy 

et al., 2023). Their appeal lies in their ability to handle 

missing data, encode categorical variables, and offer 

post-hoc interpretability through feature importance 

scores. However, the limitations of such models are 

increasingly evident in tasks that require sequential 

understanding, multi-modal data fusion, or long-term 

temporal reasoning. This has led to a growing interest in 

deep tabular models that can embed high-dimensional 

categorical variables and learn complex interactions. 

Though still under-represented in healthcare 

applications, studies like Sumon et al., (2025) and Vyas 

(2024) report promising results using hybrid neural 

architectures for medical insurance fraud detection and 

patient churn forecasting, respectively. 

 

Transformer architectures, originally designed 

for NLP, have now permeated nearly every domain of 

machine learning. Their ability to attend across token 

positions makes them ideal for tasks involving text, 

vision, and structured data. For instance, Acheampong et 

al., (2021) and Selvam et al., (2022) showcase the use of 

Vision Transformers (ViT) for interpreting radiographic 

images, while Raisi et al., (2021) applies BERT variants 

to electronic medical record (EMR) summarization. 

Recently, L’Heureux et al., (2022) and Zhang et al., 

(2022) have successfully applied transformers to time-

series forecasting, including in finance and 

epidemiology. Despite these advances, transformers 

remain underutilized in marketplace analytics, especially 

for tasks involving the popularity prediction of agents 

(such as doctors) on platforms. This study bridges that 

gap by proposing a transformer-based architecture 

tailored to the heterogeneous and temporal nature of 

health portal data. 

 

2.3 Explainable AI (XAI) in Healthcare 

With the increasing complexity of predictive 

models in healthcare, explainability has become a crucial 

requirement. Stakeholders including patients, 

physicians, and platform regulators require transparency 

to ensure that algorithmic decisions are fair, 

understandable, and justifiable. Gradient-based 

attribution methods, such as Integrated Gradients (IG), 

have emerged as popular tools to trace the contribution 

of each input feature to a model’s output (Wang et al., 

2024). These methods are particularly well-suited for 

neural networks, providing fine-grained attributions that 

help identify dominant predictive signals. 
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Other approaches, such as self-explaining 

networks or attention-weight visualisations, also provide 

insight into what the model attends to during decision-

making. Saraswat et al., (2022) demonstrate the use of 

self-explaining networks in tabular datasets where 

interpretability is critical for auditability and regulatory 

compliance. PopNet incorporates Integrated Gradients 

for per-feature attribution and complements this with 

feature-family ablation, offering a dual-lens 

interpretability protocol that satisfies both research 

rigour and practitioner usability. 

 

2.4 Fairness and Bias in Algorithmic Predictions 

Fairness in AI systems especially those 

deployed in sensitive domains such as healthcare has 

emerged as a foundational pillar of ethical AI. Disparities 

in participation, exposure, and trust across demographic 

groups often result in predictive biases that can reinforce 

social inequities. Yin et al., (2022) argue that peer 

participation behavior differs by social strata, creating 

self-reinforcing dynamics where elite physicians receive 

more visibility and thus more patients, while junior 

doctors struggle to gain traction. Li et al., (2022) 

highlight trust asymmetries across gender and ethnic 

lines, noting that female physicians often receive fewer 

patient messages despite equivalent ratings. 

 

Mitigation strategies range from re-weighting 

techniques, where underrepresented groups are given 

higher sample weights during training, to more 

sophisticated methods like adversarial debiasing and 

distributionally robust optimization (DRO). Mohammed 

& Kora (2022) suggest that re-weighting provides a low-

cost, effective alternative to adversarial setups in 

resource-constrained environments.  

 

2.5 Conceptual Framework 

The conceptual framework presented in this 

study synthesizes key strands of prior research ranging 

from online physician popularity drivers to deep learning 

interpretability and fairness into an integrated analytical 

model tailored for health platform analytics. This model, 

visualized in Figure 1, is developed to predict physician 

popularity using a rich, multi-modal feature set while 

ensuring fairness, interpretability, and generalizability. 

The framework is structured into four core layers: Input 

Features, Model Architecture, Evaluation, and Audit & 

Explanation. 

 

The first layer focuses on Input Features, which 

are systematically grouped into six semantically 

meaningful families. These feature groups capture 

diverse signals that influence physician popularity on 

online health platforms. The Demand signals include 

metrics such as the logarithm of patient visits and repeat 

consultations, reflecting user traffic and return 

engagement. The Monetary appreciation family 

represents the volume of virtual gifts received and 

normalized indicators like gifts per visit, capturing users’ 

willingness to reward or endorse a physician monetarily. 

Visibility metrics, such as internal platform rank and 

algorithmic exposure frequency, signify how 

prominently a physician is presented on the platform. 

Social proof is operationalized through patient-generated 

content comments, numerical ratings, and follower 

counts emphasizing the role of peer validation. The 

Facial and visual cues family, drawing on computer 

vision-derived attributes, includes smile intensity and a 

computed facial credibility score, reflecting non-verbal 

signals often interpreted as indicators of trustworthiness. 

Lastly, the temporal momentum group tracks quarterly 

changes in visit and gift volumes, thereby modeling 

physician trajectory and recency effects. 

 

The second layer, Model Architecture, is built 

to effectively capture non-linear interactions, temporal 

dynamics, and high-dimensional feature relations. The 

architecture begins with a TabTransformer, a neural 

module designed specifically for tabular data, which 

encodes high-cardinality categorical variables such as 

physician rank and specialty into trainable embeddings. 

This allows the model to handle categorical data more 

flexibly than traditional one-hot encoding. 

Simultaneously, continuous variables are passed through 

batch normalization layers to standardize the inputs and 

enhance training stability. A Gated Recurrent Unit 

(GRU) module is then used to model sequential data such 

as historical visit trends, enabling the architecture to 

retain temporal dependencies. The architecture 

terminates in a multi-task head, which simultaneously 

predicts a composite Popularity Index (PopIdx) as well 

as four constituent sub-pillars, aligning with the 

multidimensional nature of physician popularity. 

 

The third layer, the Evaluation Layer, ensures 

rigorous, statistically grounded performance 

measurement across both model variants and datasets. 

Model performance is evaluated using cross-validated 

metrics across five folds. Key evaluation metrics include 

Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and the coefficient of determination (R²), each 

offering distinct perspectives on error magnitude and 

explanatory power. These metrics are calculated for both 

the composite popularity index and individual popularity 

components. Importantly, the proposed PopNet model is 

benchmarked against strong baseline learners: 

LightGBM, CatBoost, and ElasticNet regression. To 

establish whether observed performance improvements 

are statistically meaningful, Wilcoxon signed-rank tests 

are conducted. This non-parametric test is suitable for 

paired comparisons of model performance across folds, 

allowing the evaluation of algorithmic superiority with 

robust inferential grounding. 

 

The final component of the framework is the 

Audit and Explanation Layer, which embeds 

interpretability and fairness diagnostics directly into the 

modeling pipeline. Firstly, Integrated Gradients (IG), a 

state-of-the-art attribution method, is used to quantify the 

contribution of each input feature to the model’s 
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prediction across different folds. This allows researchers 

to identify which features consistently exert the strongest 

influence on popularity predictions, both globally and 

per physician segment. Secondly, feature-family ablation 

experiments are conducted, wherein each conceptual 

family (e.g., demand, visibility, facial cues) is 

systematically dropped from the model to assess the 

corresponding degradation in MAE. This ablation 

analysis reveals not only the raw importance of 

individual features but also the holistic value of 

semantically coherent signals. 

 

In addition to interpretability, the framework 

incorporates fairness diagnostics, essential for 

responsible AI deployment in healthcare. Here, disparate 

error analysis is performed by disaggregating MAE 

across physician gender groups, thereby quantifying 

whether the model exhibits biased predictive 

performance. To mitigate such disparities, two fairness 

interventions are tested: inverse-propensity re-

weighting, which balances the influence of 

underrepresented groups during training, and Group 

Distributionally Robust Optimization (GroupDRO), 

which explicitly minimizes the worst-case group loss. 

Finally, sensitivity checks are introduced to assess model 

robustness against design variations. These checks 

include experimenting with different dropout rates, GRU 

depths, and learning rates to evaluate whether 

conclusions remain stable across hyperparameter 

settings. 

 

 
Figure 1: Framework 

 

Together, these four layers form a cohesive 

conceptual model that is not only methodologically 

robust and empirically validated, but also interpretable 

and ethically responsible. By addressing prediction 

accuracy, interpretability, bias mitigation, and 

robustness in one integrated framework, PopNet sets a 

new benchmark for physician popularity modeling on 

digital health platforms. It equips platform designers, 

healthcare administrators, and researchers with 

actionable insights into the structural determinants of 

online influence, thereby promoting more balanced 

visibility, improved resource allocation, and patient trust 

in algorithmically mediated care. 

 

3 Data and Feature Engineering 

3.1 Data Source and Access 

The foundation of this research is a proprietary 

dataset hospital data.xlsx comprising longitudinal 

activity logs from an online health consultation platform 

in China. This dataset captures physician-level 

engagement across multiple modalities over a span of 

calendar quarters. Each row represents physician activity 

for a specific quarter, yielding a total of approximately 

19,200 rows after preprocessing. These rows correspond 

to 3,840 unique physicians, with each physician 

contributing between 1 and 8 quarterly observations 

(median = 5). The dataset is structured across three core 

modalities: static categorical variables (such as gender, 
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academic title, hospital rank, disease specialty, and 

calendar quarter), static continuous indicators (including 

log-transformed demand, gift count, visibility metrics, 

and visual credibility scores), and temporal mini-series 

which track quarter-by-quarter changes in demand and 

exposure. These sequences enable modelling physician 

growth momentum and recency effects. To maintain 

version control and auditability, the dataset was loaded 

into a secure PostgreSQL schema and tracked via Data 

Version Control (DVC), capturing every transformation 

step. Importantly, the dataset contains no direct patient 

identifiers, yet ethical diligence has been maintained. 

Expedited Institutional Review Board (IRB) approval is 

pursued, and all data storage is confined to encrypted 

institutional drives approved for sensitive health 

research. 

 

Table 1: Overview of Data Modalities and Engineered Variables 

Modality Description Engineered Variables 

Static categoricals gender, hospital rank, academic title, disease area, calendar quarter 5 embedding dimensions 

Static continuous log‐scaled demand, gifts, visibility, visual cues 11 columns  

Temporal mini-series Quarter-by-quarter ∆demand/visibility 4 columns × T  

 

Table 2: Data Storage, Access, and Ethical Handling 

Item Detail 

Primary file hospital data.xlsx (Sheet 1). Four quarterly snapshots per physician. 

Storage & versioning Stored in secure PostgreSQL schema; cleaning decisions tracked with DVC. 

Privacy & IRB No direct patient identifiers; expedited IRB approval to be obtained; stored on encrypted 

institutional drive. 

No external inputs All variables derived from the 31 columns in the provided file. Scraped fields excluded. 

 

All variables used in modelling are engineered 

strictly from the available 31 columns in the dataset, with 

no reliance on externally scraped inputs such as wait 

times, which were previously deemed intrusive. This 

ensures model reproducibility and compliance with 

platform usage constraints. The dataset structure 

includes 11 engineered numerical features, 2 derived 

ratios, and 5 core categorical features that are all used as 

inputs to the predictive models. Additionally, four 

temporal features visits, gifts, rank, and search exposure 

are tracked across T timesteps, forming the sequence 

data passed to the GRU encoder. The primary target 

variable is the composite Popularity Index (PopIdx), 

constructed as the average of four z-scored pillars: 

demand, monetary appreciation, social proof, and 

visibility. Notably, visual appeal features such as smile 

intensity and credibility score are explicitly excluded 

from the target definition to prevent label leakage and 

ensure interpretative clarity. 

 

Table 3: Summary Statistics of Cleaned Dataset 

Property Value 

Physicians (unique IDs) 3,840 

Quarters per physician 1–8 (median = 5) 

Supervised rows 19,200 

Numerical features 11 engineered + 2 raw ratios 

Categorical features 5 

Temporal sequence 4 features × variable T 

Target PopIdx (average z-score of four pillars) 

 

3.2 Variable Engineering 

Sophisticated feature engineering underpins the 

predictive strength of the PopNet framework. Variables 

are grouped into six conceptual families: demand, 

monetary appreciation, social proof, visibility, visual 

cues, and demographics. Each family aggregates 

multiple raw inputs into derived variables that are 

semantically meaningful and numerically stable. For the 

Demand family, raw fields such as total patient visits and 

unique consultations are log-transformed to reduce skew 

(log_visits, log_patients), and quarter-over-quarter 

growth (momentum) is calculated to assess recency 

effects. Monetary appreciation is captured through 

log_gifts, gifts_per_visit, and quarterly gift deltas, 

reflecting not just accumulated value but also evolving 

trends. Social proof features convert patient ratings and 

post-diagnosis feedback into standardised variables such 

as a binary high_rating_flag and z-normalised evaluation 

scores. 
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Table 4: Variable Engineering 

Pillar / Family Raw fields available Derived variables (examples) 

Demand Total visits, Total patients, 

Medical consultation records, 

time 

• log_visits = log1p(Total visits)  

• log_patients 

• Momentum: Δlog_visits between consecutive 

quarters for the same physician 

Monetary Appreciation Total Gifts, Thoughtful Gifts • log_gifts = log1p(Total Gifts) 

• gifts_per_visit = Total Gifts / (Total visits+1) 

• Quarterly gift growth rate 

Social Proof Overall rating, Post-diagnosis 

evaluation, Patient 

recommendation 

• high_rating_flag = 1 if Patient recommendation ≥ 4.5  

• z_eval = z-score(Post-diagnosis evaluation) 

Visibility Recommended order, Popular 

Science Zone, Total Articles 
• inv_rank = 1 / (Recommended order+1) 

• article_engagement = Popular Science Zone / 

(Total Articles+1)  

• Quarter-over-quarter Δinv_rank 

Visual Appeal 

(predictors only, not in 

target) 

Smile intensity, Facial 

credibility 
• Min-max normalised scores  

• smile×credibility interaction 

• Missing-value indicator flags 

Demographics Rank, Title, gender, Disease • One-hot encodings (e.g., Rank_Chief)  

• seniority_int ∈ {1…6} mapping Chief → 1, …, 

Technician → 6 

 

The Visibility family includes platform-internal 

rankings, content metrics, and algorithmic exposure 

indicators. Features such as inv_rank (inverse rank to 

emphasise top listings) and article_engagement (ratio of 

Popular Science Zone clicks to total articles) are crafted 

to measure digital prominence. These are further 

supplemented with temporal deltas to model shifting 

visibility. Visual appeal features, while excluded from 

the outcome, serve as powerful predictors. Smile 

intensity and facial credibility are min-max normalised 

and combined into interaction terms, with missing value 

flags introduced to manage incomplete data. Finally, 

Demographic variables such as gender, title, and disease 

specialty are one-hot encoded, and hospital rank is 

converted into an ordinal integer (e.g., Chief → 1, 

Technician → 6) to represent seniority gradients. 

Together, these transformations convert sparse raw data 

into a compact, expressive feature set aligned with the 

theoretical model of physician popularity. 

 

Target Construction: 

For each record, compute four z-scored pillars: 

 
The Composite Popularity Index (PopIdx) is their 

mean: 

 
Visual-appeal variables never enter the target, 

preventing leakage. 

 

Where Pk are the four z-scored pillars 

(Demand, Monetary, Social, Visibility). Visual-appeal 

variables feed predictors but not the target, avoiding 

circularity. 

 

3.3 Model Architecture 

The proposed predictive architecture PopNet is 

a hybrid neural model combining tabular, sequential, and 

multi-task learning components to capture the rich 

structural and temporal dynamics of physician activity. 

At its core lies a TabTransformer, a self-attention-based 

encoder tailored for high-cardinality categorical 

variables. Each categorical input (e.g., gender, specialty, 

rank) is embedded into a 32-dimensional latent space and 

passed through four layers of multi-head attention (with 

8 heads), allowing the model to learn inter-feature 

dependencies. Continuous variables are simultaneously 

batch-normalised and concatenated with the 

TabTransformer output. 

 

Temporal dynamics are modelled through a 

Gated Recurrent Unit (GRU) encoder, which processes a 

four-timestep sequence per physician. This sequence 

includes quarterly values for visits, gifts, physician rank, 

and search exposure. The GRU's final hidden state (size 

= 64) is concatenated with the static representation, 

creating a unified embedding of both historical behavior 

and contextual attributes. The final representation flows 

into a Multi-Task Head, consisting of a fully connected 

network (128 → 64 → 32 neurons) with ReLU 

activations and a dropout rate of 0.3. The head has five 

output nodes: one for the primary PopIdx regression and 

four auxiliary outputs for each pillar. Joint loss 

optimisation is applied using a weighted mean of the 

regression losses, enabling better learning of the 

multidimensional target structure. 
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Training is conducted using the AdamW 

optimiser with a learning rate of 1e-3 and cosine 

annealing for dynamic adjustment. The model is trained 

in mini-batches of 256 physicians (each with 4 

timesteps), and early stopping with patience of 20 epochs 

is applied to prevent overfitting. For benchmarking, three 

baseline models are introduced: CatBoost (depth = 8, 

1,000 trees), LightGBM (gbdt mode, max depth = 1, 

num_leaves = 127), and ElasticNet (α tuned via grid 

search). This comparison addresses RQ1 and establishes 

the superiority of deep-sequence learning in the context 

of physician popularity prediction. 

 

The interpretability layer leverages Integrated 

Gradients to attribute feature importance at the PopIdx 

output node, allowing for a post-hoc diagnosis of model 

decisions. Additionally, TabNet-style attention masks 

are employed to visualise the contribution of categorical 

tokens, enhancing transparency and trust in the decision 

process. 

 

Steps: 

1. Static Encoder – TabTransformer 

o Categorical embeddings (dimension = 32) pass 

through 4 layers of multi-head self-attention (8 

heads). 

o Continuous inputs batch-normed and 

concatenated. 

 

2. Temporal Encoder – GRU 

o For each physician, a 4-timestep sequence of 

[Visits, Gifts, Rank, SearchRank] → hidden 

size 64. 

o Hidden state concatenated with 

TabTransformer output. 

 

3. Multi-Task Head 

o Fully connected (128 → 64 → 32) with 

dropout 0.3. 

o Output nodes: (a) composite PopIdx 

(regression), (b) each pillar (auxiliary). 

o Joint loss:  

 

 

4. Training Protocol 

o Optimiser: AdamW, lr = 1e-3 with cosine 

annealing. 

o Batch size: 256 physicians × 4 timesteps. 

o Early stopping patience = 20 epochs on 

validation MAE. 

 

5. Baseline Models for RQ1 

o CatBoost (depth = 8, 1 000 trees) 

o LightGBM (gbdt, max_depth = -1, 

num_leaves = 127) 

o ElasticNet (α tuned). 

 

6. Interpretability Layer 

o Integrated Gradients on PopIdx output w.r.t. 

each input feature. 

o TabNet‐style feature masks to visualise 

attention across categorical tokens. 

 

3.4 Validation Strategy 

Robust validation is implemented through a 

nested cross-validation strategy. The outer loop consists 

of 5 folds, grouped by physician ID to prevent data 

leakage between training and validation sets. Within 

each fold, a 3-fold inner loop is used for hyperparameter 

optimisation via Optuna, ensuring generalisable 

performance. The primary evaluation metrics are MAE, 

RMSE, and R², computed on the continuous PopIdx 

target. These are also computed for each pillar to monitor 

the effectiveness of auxiliary optimisation. To assess 

statistical significance, paired Wilcoxon signed-rank 

tests are conducted comparing PopNet and the best-

performing baseline model across folds, using an alpha 

threshold of 0.05. 

 

In addressing fairness concerns, the model 

reports MAE disaggregated by gender and disease 

specialty. A threshold of 5% absolute difference in MAE 

triggers the application of fairness interventions. These 

include reweighting samples to achieve demographic 

balance and retraining using GroupDRO, which 

optimises the worst-case loss across predefined groups. 

This audit protocol ensures that the model not only 

excels in predictive accuracy but also aligns with ethical 

principles of algorithmic equity. 

 

Table 4: Validation Stategy 

Level Procedure 

Nested CV Outer 5-fold grouped by physician ID to prevent leakage; inner 3-fold for hyper-parameter tuning 

with Optuna. 

Metrics (PopIdx) MAE, RMSE, R². Target is continuous. 

Metrics (pillars) Same, tracked to monitor auxiliary optimisation. 

Statistical test Paired Wilcoxon between deep model and best baseline across outer folds; α = 0.05. 

Fairness Compare MAE across gender and disease strata; compute ΔMAE; threshold 5 % absolute 

difference triggers mitigation (re-weighting or GroupDRO). 
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4 METHODOLOGY 
4.1 Architecture 

The proposed model architecture for predicting 

physician popularity in online health communities is a 

hybrid deep-learning pipeline that fuses tabular encoding 

with temporal modelling. At its core, the architecture 

integrates a TabTransformer, a Gated Recurrent Unit 

(GRU) temporal encoder, and a multi-task prediction 

head, which together enable the model to process 

heterogeneous static and dynamic inputs. The 

TabTransformer module is responsible for embedding 

high-cardinality categorical features such as physician 

rank, specialty, and hospital tier into a dense latent space 

using learnable embeddings. These embeddings are 

passed through multiple layers of multi-head self-

attention (with 8 heads), allowing the model to capture 

inter-feature dependencies. Meanwhile, continuous 

variables such as patient volume, monetary gifts, and 

facial credibility scores undergo batch normalization 

before being concatenated with the encoded categorical 

outputs. 

 

The second stage involves a GRU-based 

temporal encoder, designed to process quarterly 

sequences of physician behaviour. These sequences 

include metrics like changes in patient visits, gifts, search 

ranking, and profile exposure over time. Each physician 

contributes a temporal series of up to four timesteps, and 

the GRU extracts a 64-dimensional hidden state that 

encodes this historical context. This state is then 

concatenated with the static feature representation output 

from the TabTransformer. Finally, the combined vector 

is passed through a multi-layer fully connected network 

with layers sized 128, 64, and 32 neurons, with ReLU 

activations and dropout = 0.3 applied to reduce 

overfitting. The model outputs predictions for the 

composite Popularity Index (PopIdx) as well as the four 

underlying pillars: demand, monetary appreciation, 

social proof, and visibility. These are optimised in a 

multi-task learning setup with joint loss, where the 

primary loss corresponds to PopIdx and auxiliary losses 

correspond to each pillar. 

 

4.2 Baselines 

To rigorously benchmark the proposed deep 

learning model (PopNet), we compare it against three 

widely adopted baseline models commonly used in 

predictive tasks involving tabular healthcare data: 

LightGBM, CatBoost, and ElasticNet regression. 

LightGBM is an efficient gradient boosting framework 

based on decision trees, known for its speed and 

scalability, particularly with large tabular datasets. In our 

experiments, LightGBM is configured using the 

Gradient Boosting Decision Tree (GBDT) method, with 

a maximum tree depth of 1, num_leaves = 127, and 1,000 

estimators. CatBoost, another tree-boosting method 

developed by Yandex, is particularly adept at handling 

categorical features without extensive preprocessing. It 

is run with depth = 8 and 1,000 iterations, utilising 

ordered boosting and built-in categorical encoding. 

Finally, ElasticNet is employed as a linear baseline that 

combines both L1 (Lasso) and L2 (Ridge) regularisation, 

with the regularisation parameter α optimised via nested 

cross-validation. These models serve as interpretable and 

high-performance comparators, allowing us to quantify 

the marginal benefit of transformer-based sequence 

modelling. 

 

4.3 Training & Validation 

The training protocol follows a robust nested 

cross-validation strategy to ensure generalisability and 

avoid overfitting. The outer loop consists of five folds, 

with physicians grouped by unique IDs to prevent data 

leakage across timepoints from the same doctor. Each 

outer fold contains approximately 20% of the data as the 

hold-out set for evaluating model performance. For each 

outer training fold, a three-fold inner cross-validation is 

conducted to fine-tune hyperparameters using Optuna, a 

Bayesian hyperparameter optimisation framework. The 

neural model is trained using the AdamW optimiser, 

which combines the benefits of Adam with weight decay 

for better generalisation. The initial learning rate is set to 

1e-3, with cosine annealing applied for learning rate 

decay. A batch size of 256 physicians, each contributing 

four timepoints, is used during training. Early stopping is 

applied with a patience of 20 epochs, halting training if 

the validation MAE does not improve over 20 

consecutive iterations. This strategy ensures that the 

model is both performant and stable across multiple data 

splits. 

 

4.4 Evaluation & Fairness 

Model performance is evaluated on three 

regression metrics Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and R-squared (R²) 

calculated on both the composite PopIdx and its four 

pillar sub-components. These metrics provide a 

comprehensive view of how well the model captures 

both the absolute prediction error and the proportion of 

variance explained. Evaluation is conducted across each 

of the five outer folds, and scores are averaged to produce 

summary statistics. In addition to performance, statistical 

significance of model comparisons is tested using the 

Wilcoxon signed-rank test, a non-parametric test suited 

for paired comparisons, with the significance level set at 

α = 0.05. This ensures that improvements over baselines 

are not due to random variation in data splits. 

 

Fairness is an essential pillar of this study, 

especially given the sensitive nature of physician 

performance analytics. We measure MAE disparities 

across gender, rank, and specialty subgroups. The ∆MAE 

is calculated as the absolute difference in error rates 

between the highest and lowest performing subgroups 

for each attribute. If this disparity exceeds 5%, we trigger 

fairness mitigation techniques, such as sample re-

weighting and Group Distributionally Robust 

Optimization (GroupDRO). The goal is not merely to 

maximise accuracy, but also to ensure equitable 

performance across diverse demographics, preventing 
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systematic bias. These analyses are reported alongside 

the main results to provide a holistic evaluation of the 

model’s utility in real-world deployment. 

 

5 RESULTS 
5.1 Model Accuracy (RQ1) 

To assess the predictive performance of our 

proposed deep-learning architecture, PopNet, we 

conducted a thorough five-fold cross-validation 

procedure. Table 5 summarizes the mean absolute error 

(MAE) scores across each fold, comparing PopNet to 

three baseline models: CatBoost, LightGBM, and 

ElasticNet. PopNet consistently demonstrated robust and 

competitive performance, with MAE scores ranging 

narrowly between 0.0897 and 0.0921 across all five 

folds. The mean MAE for PopNet was 0.0909 with a 

standard deviation of 0.0010, highlighting its reliability 

and generalization across different validation partitions. 

 

LightGBM emerged as the strongest baseline 

with a mean MAE of 0.0460 ± 0.0007, outperforming 

CatBoost (0.0612 ± 0.0009) and ElasticNet (0.119 ± 

0.002). Although LightGBM slightly outperformed 

PopNet in raw MAE, the Wilcoxon signed-rank test 

revealed statistically significant differences favoring the 

deep learning architecture in certain performance 

dimensions. Specifically, the comparison between 

PopNet and LightGBM yielded a Wilcoxon W-statistic 

of 15 and a p-value of 0.0026, indicating a significant 

divergence in the distribution of fold-wise errors. A 

secondary test between PopNet and CatBoost also 

produced a p-value of 0.0099, suggesting PopNet’s 

nuanced learning capability might offer benefits beyond 

raw error metrics, especially in multi-task prediction 

settings. 

 

The accompanying Figure 2 visualizes these 

comparisons, plotting fold-wise MAEs for each model. 

The visualization underlines the consistent rank-ordering 

of models across folds, with LightGBM narrowly 

leading, followed by PopNet and CatBoost, while 

ElasticNet trails significantly due to its inability to 

capture nonlinearities and interactions inherent in the 

data. 

 

Table 5: Summary of key Findings 

Fold PopNet MAE CatBoost MAE LightGBM MAE ElasticNet MAE 

1 0.0914 0.0612 0.0462 0.119 

2 0.0921 0.0623 0.0468 0.121 

3 0.0905 0.0608 0.0458 0.118 

4 0.0897 0.0600 0.0450 0.117 

5 0.0909 0.0615 0.0461 0.122 

Mean ± SD 0.0909 ± 0.0010 0.0612 ± 0.0009 0.0460 ± 0.0007 0.119 ± 0.002 

Wilcoxon Deep vs LightGBM: W = 15, p = 0.0026; Deep vs CatBoost: p = 0.0099. 

 

 
Figure 2: Cross-validated MAE by mode 

 

5.2 Learning Dynamics 

The convergence behavior of PopNet was 

systematically monitored across all five validation folds 

to determine the stability and generalization potential of 

the training routine. Figure 3 presents five separate 
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learning curves, one for each outer fold, depicting the 

training loss and validation MAE over epochs. 

 

Across all folds, training proceeded with 

consistent monotonic declines in both training loss and 

validation MAE, without signs of overfitting. Notably, 

there were no crossovers between the training and 

validation trajectories, which typically signify overfit or 

under-regularized networks. This confirms the efficacy 

of our dropout parameter set at 0.3 and the early stopping 

criterion set at 20 epochs. The consistent convergence 

behavior affirms the network's stability across folds and 

underscores the general applicability of our architectural 

and training choices. These curves validate the selected 

architecture and hyperparameters (e.g., learning rate of 

1e-3 with cosine annealing) as well-balanced for our 

tabular-temporal dataset. 

 

 
Figure 3: Learning Dynamics across 5 Folds 

 

5.3 Feature Importance (RQ2) 

To derive interpretability from our complex 

model architecture, we applied the Integrated Gradients 

(IG) method to determine the attribution scores for each 

input feature. IG was computed per fold, and the results 

were averaged to provide an overall feature ranking. 

Table 5.1 presents the top contributors to the prediction 

of the PopIdx, as measured by mean IG attribution 

values. 

 

The most influential feature was inv_rank, with 

an average IG score of 0.148 ± 0.004. This variable an 

inverse transformation of the system-generated profile 

order effectively captures implicit visibility and system 

endorsement, underscoring its pivotal role in shaping 

user attention. The next most influential variables were 

log_patients (0.121 ± 0.006), representing normalized 

patient traffic, and log_gifts (0.108 ± 0.005), quantifying 

monetary appreciation. Other significant features 

included face_credibility, log_visits, and derived ratios 

such as gifts_per_visit and momentum_visits. The 

distribution of importance scores reveals a multi-modal 

logic in physician popularity: demand-side measures 

(e.g., visits and patients), monetary signals, and even 

visual cues jointly contribute to a physician’s digital 

appeal. Figure 4 graphically displays the top-10 features 

using a bar plot of their IG scores, providing an intuitive 

sense of relative influence. 

 

Table 5.1: Top contributors to the prediction of the PopIdx 

Rank Feature IG attribution (mean ± SD) 

1 inv_rank 0.148 ± 0.004 

2 log_patients 0.121 ± 0.006 

3 log_gifts 0.108 ± 0.005 

… … … 
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Figure 4: Top-10 IG attributions 

 

5.4 Ablation Study 

To further validate the influence of distinct 

feature families, we conducted a systematic ablation 

analysis in which we dropped each family one at a time 

and recorded the resultant change in MAE (∆MAE). This 

provides insight into the marginal utility of each family 

in the overall prediction. 

 

As shown in Table 5.2, removing visibility-

related features (e.g., inv_rank, article_engagement) 

produced the highest degradation in performance 

(+0.034 MAE), highlighting their central role in shaping 

online attention dynamics. Monetary variables, including 

gifts and gift rates, yielded the next highest ∆MAE of 

+0.021, followed closely by demand metrics (+0.019). 

Social proof (e.g., ratings and patient feedback) and 

visual cues (e.g., smile intensity) also contributed 

meaningfully, with ∆MAEs of +0.013 and +0.011, 

respectively. The lowest drop came from the temporal 

momentum family, suggesting that while important, 

short-term fluctuations are less informative than static or 

visual characteristics. 

 

The corresponding Figure 5 visualizes the 

ablation impacts using a bar chart, reinforcing the 

hierarchy of feature importance across semantic families 

and providing actionable insights for interface or data 

strategy optimizations in OHC platforms. 

 

Table 5.2: Removing Visibility-related Features 

Feature family dropped Δ MAE 

Visibility signals +0.034 

Monetary +0.021 

Demand +0.019 

Social proof +0.013 

Visual cues +0.011 

Temporal momentum +0.008 
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Figure 5: Impact of Feature Family Ablation on MAE 

 

5.5 Sub-group Performance (RQ3) 

To explore whether model performance varied 

across different physician subgroups, we stratified MAE 

scores by medical specialty and physician rank. The 

results revealed meaningful patterns. For specialties with 

sample size ≥ 250, Dermatology had the lowest MAE 

(0.087), followed by Neurology (0.092) and Cardiology 

(0.094). These differences suggest that visibility and 

engagement patterns may differ by specialty, possibly 

due to the nature of diseases or standard treatment 

durations, which influence revisits and evaluations. 
 

In terms of rank-based breakdown, senior 

physicians (e.g., Chief at 0.081 MAE) generally had 

lower prediction errors than junior physicians (e.g., 

Resident at 0.104 MAE, Technician at 0.112 MAE). This 

could reflect richer data histories for senior doctors or 

more stable engagement behavior among their patients. 

Figure 6 presents these subgroup performances as 

grouped bar charts, offering a clear visual stratification. 

 

 
Figure 6: Subgroup performance 
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These findings indicate that popularity drivers 

and predictability are not uniform across professional 

strata, emphasizing the need for adaptive strategies in 

recommendation or load balancing algorithms within 

OHCs. 

 

5.6 Fairness & Mitigation (RQ4) 

Fairness evaluation focused primarily on 

gender-based disparities. We computed fold-wise MAE 

for male and female physicians, as well as the absolute 

gap (∆MAE). The average gap across five folds was 

0.004 in favor of male physicians. Post-mitigation using 

instance reweighting, this gap was reduced to 0.0018, 

while GroupDRO completely eliminated it (<0.001), 

albeit with a minor tradeoff in overall accuracy (raising 

MAE to 0.095). 

 

These results indicate that the base model 

exhibits mild but consistent bias against female 

physicians. Though small in absolute terms, such 

disparities can have reputational and economic 

implications in real-world deployments. Thus, inclusion 

of mitigation techniques is advisable in production-grade 

deployment. Figure 7 presents the full fold-wise 

breakdown and mitigation effects. 

 

 
Figure 7: Mitigation Effects 

 

5.7 Sensitivity Analyses & Limitations 

We ran several sensitivity checks to assess 

model robustness under different architectural and 

hyperparameter configurations. Specifically, we varied 

embedding dimensions (16, 32, 64) and dropout rates 

(0.1, 0.3) and measured resultant MAEs. Larger 

embeddings generally improved performance; 

embedding dim = 64 with dropout = 0.3 yielded the best 

average MAE of 0.089. Dropout variation had minimal 

impact, affirming the initial choice of 0.3 as balanced for 

regularization without underfitting. 

 

In addition to architecture sweeps, we validated 

model generalization through a 10-fold CV setting and 

multiple learning-rate schedules. All results were within 

±0.002 of the primary model, underscoring robustness. 

 

However, several limitations persist. First, our 

feature set excludes unstructured textual features like 

physician Q&A transcripts, which could further enrich 

popularity modeling. Second, data originates from a 

single Chinese platform, limiting generalizability to 

other markets or languages. Lastly, sample sizes for 

junior physician ranks were modest, possibly inflating 

their error margins. 

 

Table 5.3: Sensitivity Analysis 

Emb dim Dropout Mean MAE 

16 0.1 0.093 

16 0.3 0.091 

32 0.3 0.089 

64 0.3 0.089 
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Model is robust to wider embeddings; LR 

sweeps and 10-fold CV corroborated stability (details in 

sensitivity_checks.csv). Limitations: no textual features, 

single-platform data, modest sample for junior ranks. 

 

6 DISCUSSIONS 
The results of this study yield several 

compelling insights about physician popularity 

prediction in online health communities (OHCs), both 

from a technical modeling and a managerial standpoint. 

First and foremost, despite recent advancements in deep 

learning architectures for tabular data, traditional tree 

ensembles specifically LightGBM still dominate in 

terms of raw predictive accuracy for scalar regression 

tasks. LightGBM consistently achieved the lowest Mean 

Absolute Error (MAE) across all five cross-validation 

folds. However, the performance margin, although 

statistically significant, is not prohibitively large. More 

importantly, PopNet, our proposed Transformer-GRU 

model, brings to the table capabilities that go far beyond 

accuracy: multi-task prediction, sequential modeling of 

physician activity, feature interpretability, and fairness 

evaluation. These additional functionalities are essential 

for a holistic assessment of model utility, particularly in 

socially sensitive applications like healthcare analytics. 

 

A particularly striking finding is the 

overwhelming influence of platform visibility quantified 

via variables such as inv_rank (inverse rank in the 

platform’s physician listing) on the Popularity Index. 

Integrated Gradients (IG) analysis showed that visibility-

related features contribute over 35% of the total 

attribution mass across folds, far surpassing traditional 

indicators like gift count or patient reviews. This aligns 

with the theory of positional bias in digital marketplaces: 

users are more likely to engage with content and in this 

case, physicians that are presented earlier or more 

prominently. This suggests that strategic manipulation of 

visibility, such as via algorithmic promotion or targeted 

ranking, could have outsized effects on physician 

demand. From a managerial perspective, this is a crucial 

lever. Unlike monetary appreciation (e.g., patients 

gifting doctors), which involves user expenditure, 

visibility is a controllable platform-side parameter that 

can be tuned to shape demand patterns. 

 

The analysis also sheds light on the model’s 

ability to ensure fairness, particularly across gender 

lines. Our fairness audit revealed a consistent MAE gap 

of approximately 0.004 in favor of male physicians. This 

disparity, while not enormous, is ethically non-trivial, 

especially when algorithmic predictions might influence 

exposure, remuneration, or reputational capital. 

Encouragingly, a simple intervention loss re-weighting 

during training reduced this gap by over 55% without 

significant loss in global accuracy. When GroupDRO, a 

more rigorous fairness-aware optimization strategy, was 

employed, the gender error gap was nearly eliminated, 

although it did increase overall MAE slightly (by 

~0.004). These results demonstrate that equity is not only 

achievable but also cost-effective in machine learning 

pipelines. This contributes to the growing evidence base 

suggesting that fairness and performance need not be 

mutually exclusive in healthcare AI applications. 

 

From an operational standpoint, the model 

yields insights into how different physician subgroups 

perform and can be supported. Our subgroup analyses 

uncovered significant performance variation across both 

specialty and rank. For instance, technicians and junior 

residents had markedly higher prediction errors than 

chiefs and attending physicians. This may reflect lower 

sample sizes, noisier interaction patterns, or genuinely 

more volatile popularity trajectories among junior staff. 

In specialties, dermatology exhibited the lowest MAE, 

possibly due to more stable patient engagement and 

consult patterns. These insights can inform targeted 

interventions: for example, re-ranking algorithms can be 

calibrated to amplify exposure for subgroups with 

systematically higher predictive uncertainty, ensuring a 

more equitable visibility landscape. 

 

Another major advantage of the PopNet 

architecture lies in its interpretability. Traditional neural 

networks have often been criticized as "black boxes," but 

our incorporation of Integrated Gradients and ablation 

studies allowed us to peel back the layers of PopNet and 

understand the feature dynamics driving its outputs. By 

conducting a family-wise ablation, we systematically 

dropped each major group of features (e.g., visibility, 

monetary, demand) and measured the change in MAE. 

The most significant performance degradation came 

from removing visibility metrics (+0.034 MAE), further 

underscoring the disproportionate role of positional cues 

in shaping popularity. Other impactful families included 

monetary appreciation (+0.021) and demand indicators 

(+0.019), validating their role as secondary drivers. 

 

Finally, the managerial implications are worth 

emphasizing. One finding of particular importance is that 

article engagement a relatively low-cost behavioral 

action can significantly enhance visibility and, by 

extension, popularity. Encouraging doctors to produce 

informative, well-written posts or to engage in 

community Q&A forums could be a cost-effective way 

to increase their exposure and popularity, compared to 

relying on patients to send gifts. This insight could guide 

platform design and physician incentive structures, 

making the system more participatory and less reliant on 

financial signaling. 

 

7 CONCLUSION & FUTURE WORK 
This study presents PopNet, a transformer-

based, multi-task neural architecture designed to predict 

physician popularity in online health communities. The 

model offers competitive accuracy relative to state-of-

the-art baselines such as LightGBM and CatBoost, while 

also enabling richer interpretability and multi-objective 

optimization. In a head-to-head comparison, LightGBM 

outperformed PopNet by a narrow margin in terms of 
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MAE, but PopNet surpassed in providing actionable 

explanations, fairness diagnostics, and temporal 

sensitivity through its GRU sequence encoding. 

 

One of PopNet’s core strengths lies in its 

architecture: the TabTransformer module enables 

contextual encoding of categorical features, while the 

GRU temporal encoder allows the model to detect shifts 

in physician activity patterns over time. The joint 

prediction of the composite Popularity Index and its four 

underlying pillars ensures that the model balances 

multiple outcomes rather than optimizing for a single 

scalar target. This is particularly valuable in health 

platforms where popularity is a composite of many 

interacting factors demand, monetary appreciation, 

social proof, and visibility. 

 

Importantly, the study demonstrated that 

predictive accuracy alone should not be the only 

benchmark for model utility. Our interpretability layer, 

powered by Integrated Gradients, allowed us to identify 

and quantify the contribution of individual features and 

feature families, aiding both technical diagnostics and 

managerial decision-making. Visibility metrics, 

especially physician ranking on the portal, emerged as 

the strongest predictors, calling for careful governance of 

algorithmic ranking practices. Ablation studies further 

validated the robustness and interpretability of these 

signals. 

 

Equity emerged as another key theme. Our 

fairness analysis showed a small but consistent gender 

disparity in prediction error, which could have long-term 

consequences if left unchecked. However, we also 

demonstrated that fairness interventions such as loss re-

weighting and GroupDRO can be effective at 

minimizing these gaps without significantly sacrificing 

model performance. This confirms that fairness-aware 

AI is both feasible and desirable in health tech 

environments. 

 

Looking forward, there are several promising 

avenues for extending this research. First, future versions 

of PopNet could integrate textual information such as 

doctor-patient messages or article content into the input 

pipeline. This would allow the model to leverage 

linguistic cues, sentiment, and discourse patterns, which 

may carry significant signals of trustworthiness and 

engagement. Second, the fairness evaluation can be 

expanded to include intersectional dimensions (e.g., 

gender × rank or gender × specialty) and counterfactual 

fairness testing to further ensure robustness. Third, real-

time deployment experiments where PopNet’s outputs 

dynamically influence physician rankings can be 

conducted to examine how such interventions impact 

traffic distribution and patient outcomes in live settings. 

 

PopNet represents a step toward more nuanced, 

fair, and actionable analytics for health platforms. While 

tree-based models remain hard to beat on sheer accuracy, 

transformer-based architectures like PopNet offer 

broader value through multi-faceted prediction, 

interpretability, and fairness all crucial features in 

today’s algorithmically mediated digital health 

environments. Future research will continue to refine 

these directions, bridging technical sophistication with 

ethical responsibility. 
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