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Abstract  
 

This article proposes an innovative approach to optimizing scheduling in reconfigurable production systems, with a focus 

on minimizing resource allocation in a dynamic environment while considering time constraints and resource availability. 

We present a methodology based on intelligent Petri nets to model and solve this complex problem. Our approach aims to 

maximize operational efficiency and flexibility of production systems while ensuring optimal performance in the face of 

unforeseen events and changing market demands. We illustrate the effectiveness of our approach through a case study in a 

real industrial context, demonstrating the tangible benefits it offers in terms of optimizing production processes and 

reducing costs. 

Keywords: Reconfigurable Production Systems, Scheduling Optimization, Intelligent Petri Nets, Resource Allocation, 
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1. INTRODUCTION 
In an ever-evolving industrial context, marked 

by globalization, technological advancements, and 

shifting consumer preferences, traditional production 

models are no longer sufficient to meet the demands of 

this dynamic environment [1, 2]. Faced with these 

growing challenges, reconfigurable manufacturing 

systems (RMS) have emerged as a promising solution 

[3]. Unlike fixed-configuration factories, these systems 

are designed to be highly flexible, allowing for quick 

adaptation to changes in production requirements [4]. 

Reconfigurable manufacturing systems are characterized 

by modular configurations, interchangeable components, 

and advanced automation technologies, promoting 

efficient resource utilization and seamless 

reconfiguration in response to demand fluctuations [1, 

3]. 

 

However, despite their potential, scheduling 

tasks in reconfigurable manufacturing systems remains a 

complex and arduous challenge [5]. The dynamic nature 

of these systems, combined with the diversity of 

production requirements and resource constraints, 

presents major obstacles to effective scheduling. 

Production managers must balance the optimal use of 

limited resources, adherence to strict delivery deadlines, 

and overall operational efficiency optimization [6, 7]. 

 

Moreover, the inherent complexity of 

scheduling in reconfigurable manufacturing systems is 

exacerbated by uncertainties such as machine 

breakdowns, material shortages, and demand 

fluctuations [5, 8]. Traditional scheduling approaches 

often struggle to manage these uncertainties, leading to 

suboptimal production outcomes and increased costs. 

 

Given these challenges, there is an urgent need 

to develop innovative scheduling methodologies capable 

of addressing the complexities of reconfigurable 

manufacturing systems [5]. By leveraging advanced 

modeling techniques and intelligent algorithms, such as 

Petri nets, it becomes possible to develop dynamic and 
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adaptive scheduling solutions that optimize production 

processes in real-time [6, 7]. 

 

In summary, the modern industrial landscape 

demands production systems that are not only flexible 

and efficient but also capable of rapidly adapting to 

changes and uncertainties [2]. Reconfigurable 

manufacturing systems offer a promising solution to 

meet these demands, but effective scheduling remains a 

critical challenge [1]. The following sections of this 

article will explore in detail the proposed approach based 

on intelligent Petri nets to address this challenge and 

optimize scheduling in reconfigurable manufacturing 

systems. 

 

The primary objective of this article is to 

propose a novel scheduling approach utilizing intelligent 

Petri nets to tackle the complexities of reconfigurable 

production systems. Our aim is to develop a dynamic and 

adaptive methodology that enhances production process 

optimization in these versatile environments. 

 

The structure of our article is organized as 

follows: In Section 2, we provide a comprehensive 

review of the related work, highlighting the existing 

methods and approaches in the domain of scheduling 

within reconfigurable production systems. This section 

also discusses the limitations of these methods and 

identifies the gaps that our proposed approach aims to 

address. Section 3 introduces our proposed approach for 

scheduling in reconfigurable production systems, 

detailing the integration of Petri nets with heuristic and 

meta-heuristic algorithms, as well as the real-time 

adaptation mechanisms that enhance system flexibility 

and productivity. Section 4 presents the results and 

discussion, where we evaluate the effectiveness of our 

approach through simulations and case studies, 

analyzing the performance in terms of key metrics such 

as makespan and resource utilization. Finally, the 

conclusion summarizes the key findings, reflects on the 

practical implications of our work, and suggests 

directions for future research in this area. 

 

2. RELATED WORK 
The "Related Work" section of the article 

provides an overview of prior research in scheduling for 

reconfigurable production systems. It reviews existing 

methodologies and highlights their strengths, 

weaknesses, and limitations. Various approaches, 

including heuristic and meta-heuristic techniques, are 

explored to understand the current state of the field. The 

section emphasizes the need for a more adaptive and 

intelligent solution to address the complexities of 

scheduling in reconfigurable production systems. 

 

2.1. Overview of Scheduling Approaches in 

Reconfigurable Production Systems 

Scheduling in reconfigurable production 

systems is essential for efficiently allocating resources 

and orchestrating production activities to meet various 

goals such as minimizing makespan and maximizing 

throughput. This section introduces scheduling in these 

systems, noting their adaptability to changing 

requirements and the need for optimized sequencing and 

resource allocation [9]. Traditional approaches, 

including heuristic algorithms, mathematical 

optimization models, and rule-based methods, are 

discussed, highlighting their reliance on predefined 

criteria and expert knowledge [10]. Despite their utility, 

these methods face challenges due to the dynamic nature 

of reconfigurable systems, such as real-time decision-

making and adapting to fluctuations in demand and 

resource availability [11]. This overview sets the 

foundation for exploring the limitations of traditional 

methods and introduces innovative solutions based on 

intelligent Petri nets. 

 

2.2. Review of Prior Research on Scheduling in 

Reconfigurable Production Systems  

This section provides a comprehensive review 

of prior research on scheduling in reconfigurable 

production systems, focusing on methodologies such as 

heuristic, meta-heuristic, and optimization techniques. 

The review begins with an exploration of existing 

literature, highlighting key studies and contributions that 

have shaped the understanding of scheduling challenges 

in these dynamic systems [9, 12]. It examines heuristic 

techniques for their simplicity and computational 

efficiency, meta-heuristic techniques for their flexibility 

in exploring large solution spaces, and optimization 

techniques for their ability to provide near-optimal 

solutions within well-defined problems [13]. 

 

Additionally, this section evaluates case studies 

and empirical research to assess the practical application 

and effectiveness of these methodologies in real-world 

manufacturing environments. This includes examining 

the strengths and limitations of various approaches and 

identifying best practices for optimizing scheduling in 

reconfigurable systems [14]. The review underscores the 

need for innovative scheduling solutions and sets the 

stage for introducing the proposed approach based on 

intelligent Petri nets in subsequent sections of the article. 

 

2.3. Strengths and Limitations of Existing 

Methodologies  

In this section, we delve into a detailed analysis 

of the strengths and limitations of existing 

methodologies used in scheduling for reconfigurable 

production systems. 

 

Analysis of Traditional Scheduling 

Approaches: We begin by analyzing the strengths and 

weaknesses of traditional scheduling approaches 

commonly employed in reconfigurable production 

systems. Traditional methods such as heuristic 

algorithms, mathematical optimization models, and rule-

based methods have been widely used due to their 

simplicity and ease of implementation. 
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Identification of Strengths: Traditional 

scheduling approaches offer simplicity and 

computational efficiency, making them suitable for 

addressing basic scheduling problems [10]. Heuristic 

algorithms, for example, provide quick solutions and can 

handle large problem instances effectively [15]. 

Mathematical optimization models, on the other hand, 

guarantee optimality under certain conditions and are 

valuable for well-defined scheduling problems [16]. 

 

Identification of Limitations: Despite their 

advantages, traditional scheduling approaches have 

several limitations. Heuristic algorithms may sacrifice 

optimality for speed and may not always produce the best 

solutions [15]. Mathematical optimization models may 

struggle with dynamic environments and may require 

significant computational resources to solve complex 

problems [16]. Rule-based methods, while intuitive, may 

lack adaptability and struggle to cope with unforeseen 

changes in production conditions [17].  

 

Discussion on Applicability: The discussion 

extends to the applicability of these methodologies in 

real-world manufacturing scenarios. While traditional 

scheduling approaches have been widely used in 

industry, their effectiveness may vary depending on the 

specific characteristics of the production environment. 

Heuristic algorithms, for instance, may be suitable for 

simple production systems with stable demand patterns, 

but may not be adequate for highly dynamic 

environments with frequent changes in production 

requirements. Mathematical optimization models may be 

better suited for deterministic scheduling problems but 

may struggle with uncertainty and variability inherent in 

reconfigurable production systems [10]. 

 

In conclusion, understanding the strengths and 

limitations of existing methodologies is crucial for 

selecting the most appropriate approach to address 

scheduling challenges in reconfigurable production 

systems. While traditional methods offer simplicity and 

computational efficiency, they may not always be 

sufficient to tackle the complexities of dynamic 

manufacturing environments. Future research should 

focus on developing more adaptive and robust 

scheduling techniques that can effectively address the 

evolving needs of modern manufacturing systems. 

 

2.4. Exploration of Adaptive and Intelligent Solutions 

In this section, we embark on an exploration of 

adaptive and intelligent solutions for scheduling in 

reconfigurable production systems, aiming to leverage 

advancements in machine learning, artificial 

intelligence, and Petri net-based approaches. 

 

Introduction to Adaptive and Intelligent 

Scheduling Approaches: We begin by introducing the 

concept of adaptive and intelligent scheduling 

approaches, which utilize advanced techniques to 

dynamically adjust schedules based on real-time data and 

evolving production requirements. Unlike traditional 

methods that rely on predefined rules or models, adaptive 

and intelligent solutions harness the power of data-driven 

algorithms to optimize scheduling decisions. 

 

Review of Recent Advancements: We proceed 

to review recent advancements in the field, focusing on 

emerging technologies such as machine learning, 

artificial intelligence (AI), and Petri net-based 

approaches. Machine learning algorithms, for example, 

can analyze historical production data to identify patterns 

and trends, enabling predictive scheduling and proactive 

decision-making [17]. AI techniques, including deep 

learning and reinforcement learning, offer the potential 

to autonomously adapt schedules in response to changing 

production conditions. Petri net-based approaches 

provide a formal framework for modeling and analyzing 

dynamic scheduling problems, offering insights into 

system behavior and performance [15]. 

 

Discussion on Potential Benefits: The 

discussion extends to the potential benefits of adaptive 

and intelligent solutions in addressing the challenges of 

scheduling in reconfigurable production systems. By 

leveraging real-time data and advanced analytics, these 

solutions can enhance decision-making accuracy, 

optimize resource utilization, and improve overall 

operational efficiency. Adaptive scheduling approaches 

enable agile responses to changes in production 

requirements, minimizing disruptions and maximizing 

productivity. Intelligent solutions offer the potential to 

uncover hidden insights and optimize schedules in ways 

that traditional methods cannot, leading to cost savings 

and competitive advantages in dynamic manufacturing 

environments [10]. 

 

In essence, the exploration of adaptive and 

intelligent solutions represents a paradigm shift in 

scheduling methodologies, offering the promise of 

enhanced agility, efficiency, and competitiveness in 

reconfigurable production systems. By embracing these 

advanced technologies, organizations can unlock new 

opportunities for innovation and optimization in their 

manufacturing operations. 

 

2.5. Need for an Adaptive and Intelligent Solution: 

In this section, we synthesize findings from 

prior research to underscore the imperative need for a 

more adaptive and intelligent scheduling solution in 

reconfigurable production systems. 

 

Synthesis of Findings: Drawing upon insights 

gleaned from prior research efforts, we highlight the 

limitations of traditional scheduling approaches in 

effectively addressing the complexities of reconfigurable 

production systems [15, 16]. While traditional methods 

have been valuable in certain contexts, they often fall 

short in dynamically adapting to changing production 

requirements, resource constraints, and market dynamics 

[10]. The synthesis of findings underscores the pressing 
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need for innovative solutions that can autonomously 

adjust schedules in real-time, optimize resource 

allocation, and proactively respond to disruptions. 

 

Identification of Gaps and Opportunities: 

Through a critical analysis of existing literature, we 

identify gaps and opportunities for future research in the 

field of scheduling for reconfigurable production 

systems. These gaps may include the need for more 

robust algorithms capable of handling uncertainty and 

variability, the integration of advanced analytics for 

predictive scheduling, and the development of decision-

support tools for agile decision-making [17]. By 

identifying these areas of opportunity, we lay the 

groundwork for future research endeavors aimed at 

advancing the state-of-the-art in scheduling 

methodologies. 

 

Emphasis on Proposed Innovative Approach: 

Finally, we emphasize the significance of proposing an 

innovative approach based on intelligent Petri nets, as 

outlined in the objectives of the article. Intelligent Petri 

nets offer a formal framework for modeling and 

analyzing dynamic scheduling problems, combining the 

flexibility of Petri nets with the intelligence of machine 

learning and artificial intelligence techniques [15]. By 

leveraging the strengths of intelligent Petri nets, our 

proposed approach aims to address the shortcomings of 

traditional scheduling methods and provide a more 

adaptive and intelligent solution for reconfigurable 

production systems. 

 

In conclusion, the synthesis of findings from 

prior research underscores the critical need for a more 

adaptive and intelligent scheduling solution in 

reconfigurable production systems. By identifying gaps 

and opportunities for future research and emphasizing 

the significance of our proposed innovative approach, we 

aim to contribute to the advancement of scheduling 

methodologies in dynamic manufacturing environments. 

 

3. PROPOSED APPROACH FOR SHEDULING IN 

RECONFIGURABLE PRODUCTION SYSTEMS  

In addressing the complexities of scheduling 

within reconfigurable production systems (RMS), our 

approach integrates advanced modeling techniques with 

a robust combination of heuristic and meta-heuristic 

algorithms. This strategy is tailored to meet the unique 

challenges posed by dynamic production environments, 

including fluctuating resource availability, real-time 

decision-making requirements, and the need for system 

adaptability. 

 

3.1. Modeling with Petri Nets 

The foundation of our approach is the use of 

Petri nets, a powerful and formal modeling technique 

that excels in representing systems characterized by 

concurrency, synchronization, and resource sharing. 

Petri nets provide a graphical and mathematical tool for 

capturing the intricate relationships among tasks, 

resources, and constraints within RMS. By developing a 

Petri net-based model, we are able to accurately depict 

the dynamic behavior of the production system, which is 

crucial for understanding and managing the complexities 

inherent in reconfigurable environments. 

 

Petri Net Representation: 

• State Vector: Let 𝑆(𝑡) =
[𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)] represent the state of the 

system at time t , where 𝑠𝑖(𝑡) denotes the 

marking of place 𝑖 (number of tokens in place 𝑖. 
• Transition Firing: A transition 𝑇𝑗 fires if and 

only if all the input places of 𝑇𝑗 contain the 

required number of tokens. The new state 

𝑆(𝑡 + 1)  after firing transition 𝑇𝑗  can be 

expressed as: 

𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝐶𝑗 … … … … … … … … . (1) 

 

Where 𝐶𝑗 is the change vector associated with transition 

𝑇𝑗. 

 

This Petri net model encapsulates various 

aspects of the production process, including task 

dependencies, resource allocation, and potential 

conflicts. The model serves as a critical input to our 

scheduling algorithms, ensuring that the solutions 

generated are not only feasible but also optimized 

according to the system's dynamic characteristics. 

 

 
Figure 1: Alternative Petri Net Model for Dynamic Task Scheduling in Reconfigurable Manufacturing Systems (RMS) 
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Model Description: 

• Job Queue (P1): Tasks are queued here, waiting 

to be assigned to either Machine A or B. 

• Machine Idle (P2 & P3): Represent the idle state 

of Machines A and B, ready to accept new tasks. 

• Task Assignment (T1 & T2): Tasks are 

assigned to Machine A or B based on 

availability, moving tokens from P1 to P4 or P5. 

• Task Processing (T3, T4, T5, T6): The tasks are 

processed on the respective machines, with 

tokens moving through the states of being 

assigned, in process, and completed. 

• Task Inspection (T7, T8, T9): After processing, 

tasks undergo inspection. Depending on the 

outcome, tasks may pass and move to the 

finished state or fail and require rework. 

• Rework and Completion (T10 & T11): Failed 

tasks are reworked and re-enter the processing 

cycle, while passed tasks are moved to the 

finished products state. 

 

3.2. Heuristic and Meta-heuristic Algorithms 

Complementing the Petri net model, we 

implement a suite of heuristic and meta-heuristic 

algorithms designed to efficiently tackle the scheduling 

problem. Given the complexity and uncertainty of RMS, 

traditional optimization methods may fall short in 

providing timely and practical solutions. 

 

3.2.1. Heuristic Techniques 

• Shortest Processing Time (SPT): 

𝑆𝑃𝑇(𝑖) = 𝑚𝑖𝑛 𝑝𝑗 ; 𝑗𝜖{1, … , 𝑛} … … … … … … … . . (2) 

 

Where 𝑝𝑗 is the processing time of task 𝑗. The task with 

the shortest processing time is given the highest priority. 

 

• Earliest Due Date (EDD): 

𝐸𝐷𝐷(𝑖) = 𝑚𝑖𝑛 𝑑𝑗  ; 𝑗𝜖{1, … , 𝑛} … … … … … . … … (3) 

 

Where 𝑑𝑗 is the due date of task 𝑗. Tasks are prioritized 

by their due dates, with the earliest due date given the 

highest priority. 

 

3.2.2. Meta-heuristic Algorithms 

• Genetic Algorithm (GA): 

 

Fitness Function : 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) =
1

1+Makespan
 ………….(4) 

 

Where the makespan is the total time required to 

complete all tasks in the chromosome's schedule. 

 

Crossover and Mutation: These genetic 

operations are applied to generate new solutions by 

combining existing ones and introducing variations. 

 

 

 

 

3.2.3. Simulated Annealing (SA) 

• Probability of Acceptance : 

𝑃(𝛥𝐸) = exp (−
𝛥𝐸

T
) … … … … … … … … . . … . . . . … . (5) 

 

Where 𝛥𝐸 is the change in the objective function value, 

and 𝑇 is the temperature, which decreases over time. 

 

3.2.4. Ant Colony Optimization (ACO) 

• Pheromone Update:  

 …… (6) 

 

Where  is the pheromone level on the path from 

node 𝑖 to node  is the evaporation rate, and 𝑘 at time 

𝑡. 
 

These algorithms are particularly effective in 

exploring large solution spaces and handling multi-

objective optimization problems, helping identify robust 

scheduling strategies that can adapt to changes in 

production conditions. 

 

3.3. Real-time Adaptation and Optimization 

Recognizing the dynamic and often 

unpredictable nature of reconfigurable production 

environments, our approach places a strong emphasis on 

real-time adaptation and optimization. The scheduling 

solutions generated by our algorithms are continuously 

updated based on real-time data streams. 

 

Real-time Optimization Equation: 

• Dynamic Adjustment: 

New Schedule = Old Schedule + 𝝙Schedule(t)..  (7) 

 

Where 𝝙Schedule(t) represents the adjustment made in 

response to real-time data at time 𝑡.  
 

This adaptability is crucial for maintaining high 

levels of productivity, minimizing downtime, and 

responding swiftly to unforeseen challenges. 

 

3.4. Validation and Iterative Improvement 

Validation is a key component of our approach, 

ensuring that our models and algorithms perform 

effectively in real-world scenarios. 

 

Validation Metric: 

• Makespan: 

Makespan = 𝑚𝑎𝑥 𝐶𝑗  ; 𝑗𝜖{1, … , 𝑛} … … … … … . (8) 

 

Where 𝐶𝑗 is the completion time of task 𝑗. 

 

Simulation and case studies are used to validate 

our approach, followed by an iterative refinement 

process to enhance robustness based on feedback and 

results. 
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3.5. Integration into Production Environments 

Finally, our approach is developed with 

practical deployment in mind, offering comprehensive 

guidelines for integrating our scheduling solution into 

existing production systems. 

 

Integration Consideration: 

• Data Integration Function:  

Integrated Data = ∑ 𝛼0 × 𝑠𝑜𝑢𝑟𝑐𝑒𝑖

𝑛

𝑖=1

… … … … (9) 

 

Where 𝛼0 represents the weight of data source 𝑖 in the 

overall integration process. 

 

By providing tools that are both theoretically 

sound and practically viable, we aim to empower 

manufacturers to optimize their production schedules, 

reduce operational costs, and enhance overall efficiency 

in reconfigurable production systems. 

 

Our proposed approach for scheduling in 

reconfigurable production systems combines the 

powerful modeling of Petri nets with advanced heuristic 

and meta-heuristic algorithms, enabling optimal resource 

management and dynamic adaptation to system 

variations. Through the integration of real-time 

processing techniques, this method offers increased 

flexibility and the ability to maintain high levels of 

productivity despite unforeseen challenges. 

 

4. RESULTS AND DISCUSSION 
In this section, we present and discuss the 

results obtained from the execution of our Petri net 

model simulation. The simulation was designed to 

represent a production process within a manufacturing 

environment, with various transitions illustrating the 

flow of resources and tasks. The results, supported by 

visual figures and detailed tables, provide insights into 

the system's behavior and performance under the given 

conditions. 

 

4.1. Simulation Execution Overview 

The simulation was executed with initial values 

provided by the user for six key places in the Petri net 

model: ProductAssembly, TestingStation, Machine1, 

Machine2, SkilledWorkers, and RawMaterialsStorage. 

These initial values are critical as they define the starting 

state of the system and influence the execution of 

transitions. The initial values were: 

 

 
Figure 2: Initial System State Configuration and Setup 

 

Following the initialization, the simulation 

proceeded through three main transitions: 

StartProductionTask, AllocateResources, and 

TaskCompletion. Each transition was executed 

successfully, generating the following outputs: 

• Production task started. 

• Resources allocated. 

• Production task completed. 

 

The simulation completed without errors, as 

indicated by an exit code of 0, confirming the successful 

execution of the process. 

4.2. Figures 

To better understand the simulation results, 

several figures were generated: 

Figure 3 A curve illustrating the consumption of 

resources over time during the simulation. This figure 

shows how resources (such as SkilledWorkers and 

RawMaterialsStorage) are utilized as the production 

process progresses. The x-axis represents time, while the 

y-axis shows the quantity of resources remaining. The 

curve highlights the points at which resources are 

allocated and depleted. 
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Figure 3: Resource Consumption Over Time for SkilledWorkers and Raw Materials 

 

Figure 4 A bar chart comparing the initial and 

final states of the key places in the Petri net. This figure 

provides a visual comparison of the system's state before 

and after the simulation, indicating how the production 

process affected the distribution of tokens across 

different places. 

 

 
Figure 4: Comparative Bar Chart of Initial and Final States in the Petri Net 

 

Figure 5 A pie chart representing the proportion 

of resources allocated to each machine and task. This 

figure gives a clear view of how resources were 

distributed among various components of the production 

system, allowing for an assessment of the efficiency of 

resource utilization. 
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Figure 5: Proportion of resources allocated to each machine and task 

 

4.3. Tables 

The simulation results are further detailed in the 

following tables: 

Table 1 A summary of the initial and final 

values of the places in the Petri net model. This table 

provides a clear comparison of how the system's state 

changed from the beginning to the end of the simulation. 

 

Table 1: Comparison of Initial and Final Values in the Petri Net Model 

Place Initial Value Final Value 

Product Assembly 1 0 

Testing Station 6 7 

Machine1 4 3 

Machine2 3 2 

Skilled Workers 10 9 

Raw Materials Storage 15 12 

 

Table 2 A table detailing the transitions executed, the conditions met for each transition, and the resulting changes 

in the state of the Petri net. 

 

Table 2: Overview of Executed Transitions and State Changes 

Transition Pre-conditions Post-conditions Output Message 

Start Production 

Task 

Product Assembly has a token Token added to Product Assembly Production task 

started. 

Allocate 

Resources 

Raw Materials Storage >= 3, 

Machine1 >= 1 

Tokens moved from resources to 

machines 

Resources allocated. 

Task Completion Machine1, Machine2, Skilled 

Workers > 0 

Tokens moved to Testing Station Production task 

completed. 

 

4.4. DISCUSSION 
The simulation results provide a comprehensive 

view of the production process within the Petri net 

model. The curve in Figure 3 demonstrates how 

resources were consumed over time, with notable drops 

corresponding to the execution of transitions. This 

indicates that the model accurately represents the 

dynamics of resource allocation and consumption. 

 

The bar chart in Figure 4 visually compares the 

initial and final states of the system, showing how 

resources and tasks were distributed before and after the 

simulation. The decrease in tokens in places like 

Machine1 and Machine2, along with the increase in 

Testing Station, reflects the successful completion of the 

production tasks. 

 

The pie chart in Figure 5 highlights the 

distribution of resources across different tasks and 

machines. The chart indicates that resources were 

allocated in a balanced manner, with no single 

component consuming an excessive amount of 
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resources. This suggests that the system was well-

optimized for the tasks at hand. 

 

The detailed tables further corroborate these 

findings, offering a numerical perspective on the state 

changes and transitions that occurred during the 

simulation. The transition conditions and their 

corresponding output messages provide clear evidence of 

the system's functionality and effectiveness in managing 

the production process. 

 

5. CONCLUSIONS 
In this article, we proposed a comprehensive 

approach for scheduling in reconfigurable production 

systems, integrating Petri nets for system modeling with 

heuristic and meta-heuristic algorithms to optimize 

resource allocation and task scheduling. Our method was 

designed to address the unique challenges of dynamic 

and unpredictable production environments, offering 

real-time adaptability and robust performance. The 

simulation results demonstrated the effectiveness of our 

approach in maintaining high productivity levels while 

efficiently managing resources and handling system 

variability. Future research could explore the integration 

of machine learning techniques to further enhance the 

predictive capabilities of the scheduling model. 

Additionally, extending the approach to accommodate 

multi-objective optimization scenarios could provide 

more versatile solutions for complex production 

environments. 
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