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Abstract  
 

This paper presents the findings of a probabilistic evaluation of a doubly symmetric I-steel beam's bending, shear, and 

deflection limit states. The design adhered to BS 5950, Part 1, 2000. Failure equations for flexure, shear, and deflection 

were derived, while random variable probabilistic models were sourced from the literature. Optimization using the First-

Order Reliability Method (FORM) yielded design points, reliability indices, and sensitivity analyses. The results revealed 

that the reliability index decreased as beam span increased, with negative indices observed at a load ratio of 1.0 and beam 

span of 8.5m. Moreover, increasing the beam span to an overall depth ratio above 42 compromised reliability. The design 

achieved material savings in the plastic section modulus for a target reliability index of 3.0 but increased the modulus for 

a target index of 3.80 over a 50-year period. The design proved critical in bending, safe in deflection, and satisfactory in 

shear. 
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1.0 INTRODUCTION 
In recent times, the Nigerian populace has been 

witness to an unprecedented and alarming rise in the 

collapse of building structures, resulting in the 

destruction of properties worth billions of naira. This 

distressing trend necessitates the implementation of 

reliability analysis for structures or their components at 

every stage of their service lives, rather than adopting a 

passive approach and observing their eventual collapse, 

Sule et al., [1]. According to the esteemed scholars 

Mosley and Bungey [2], engineered structures must 

fulfill the requirements of both the ultimate and 

serviceability limit states. The strength of any engineered 

structure inevitably undergoes degradation over time, 

making condition assessment of utmost importance [3, 

4]. 

 

It is imperative to acknowledge that the design 

of structures or structural members based solely on codes 

cannot guarantee absolute safety, as the design may 

prove inadequate due to poor estimation of loading and 

may even be uneconomical due to an overestimation of 

loads. The root cause of poor loading estimation lies in 

the inherent variability of the design parameters 

employed in the design equations. The presence of 

variability in these design parameters renders it 

exceedingly challenging to accurately predict the safety 

of engineered structures and cost implications during the 

design phase [5]. Given the catastrophic consequences 

that result from structural failure, it is essential for 

structural engineers to intervene promptly at every stage 

of a structure's service life, in order to avert the 

devastating effects that failure and subsequent collapse 

can inflict. 

 

The implementation of a probabilistic 

framework has proven immensely beneficial in the 

condition assessment of various civil engineering 

facilities, as it effectively addresses the uncertainties 

associated with design parameters [6]. In light of this, the 

present study aims to conduct a probabilistic assessment 

of a doubly symmetric I-steel beam, focusing on the limit 

state of bending, shear, and deflection, respectively. To 

achieve this objective, the First-Order reliability method 

was employed, and a bespoke MATLAB code was 

developed, utilizing the derived failure functions. This 

code enables estimation of the reliability indices for 

different values of the random variables, thereby 

facilitating an investigation into the impact of these 

variables on the beam's reliability levels. 

 

https://saudijournals.com/sjeat
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Esmaeil, et al., [7] conducted an extensive 

investigation on reliability index, with a specific focus 

on optimizing self-centering structures to attain the 

minimum weight possible by utilizing metaheuristic 

algorithms. This study encompassed not only linear but 

nonlinear reliability problems, thereby providing a 

comprehensive analysis. The findings of their research 

unveiled significant results, indicating a noteworthy 

decrease in weight of 36%, 30%, and 32% for buildings 

with 10, 15, and 20 storeys, respectively, when 

uncertainties were not accounted for. However, when 

uncertainties were factored in, a remarkable weight 

reduction of 23% was achieved for the same buildings. 

This implies that the consideration of uncertainties can 

lead to an increase in failure probability of up to 23%. In 

addition, the authors made an interesting observation 

regarding the performance of the charged system search 

and colliding bodies optimization algorithms, noting 

their effectiveness in the context of this study. 

Consequently, it can be concluded that the incorporation 

of a reliability index, while leading to the construction of 

heavier structures, ultimately enhances the overall safety 

of these structures. 

 

Junho [8] extensively examined the concept of 

"Reliability-Based Design Optimization (RBDO) of 

Structures Using Complex-Step Approximation with 

Sensitivity Analysis". In the study, he conducted a 

thorough examination of the application of reliability 

analysis in the field of structural design. Through the 

meticulous experimentation and examination of various 

structural optimization problems, encompassing a wide 

spectrum of statistical variations, he successfully 

showcased the potential of this method in achieving 

optimal performance while adhering to highly precise 

probabilistic constraints. By employing complex-step 

approximation, the accuracy of RBDO was significantly 

enhanced, leading to a notable improvement in the 

overall performance benefits associated with structural 

optimization. 

 

Jerez et al., [9] in their studies conducted a 

comprehensive survey to explore the most recent 

advancements in reliability-based design optimization of 

structures subjected to stochastic excitation. In their 

study, they examined various approaches, including the 

search-based technique, sequential optimization 

approach, and scheme-based approach. An intriguing 

observation made by the authors was the significant 

influence of computational aspects in successfully 

addressing optimization problems. Furthermore, their 

comprehensive overview suggests that the methods 

employed for achieving optimal design in stochastic 

structural dynamics are no longer confined to academic 

scenarios but can also serve as valuable tools in solving 

a wide range of engineering design problems. 

 

The investigation conducted by [10] focused on 

the examination of reliability analysis and design 

optimization for nonlinear structures. In order to 

accomplish this, they employed the Kriging based 

method and the First-order reliability method (FORM). 

The Kriging based method, showed greater levels of 

efficiency and accuracy when compared to the FORM 

based method and the Monte Carlo Simulation (MCS) 

method. Interestingly, the Kriging based method did not 

require the determination of the response sensitivity, 

thereby enhancing its adaptability for various scenarios. 

 

An examination of the reliability analysis of 

steel rack frames using the Direct Design Method was 

carried out by [11]. Furthermore, they developed curves 

that illustrate the relationship between the system 

reliability index (β) and the system resistance factors (ϕs) 

for these steel rack frames and compared their findings 

to those of a traditional design approach based on elastic 

analysis. To carry out their assessment, the researchers 

employed a combination of the DDM, a formulation of 

the limit state function, and probabilistic modelling 

through Monte Carlo simulation. This allowed them to 

thoroughly investigate the reliability of steel rack frames 

and derive the system reliability indices. The results they 

obtained indicated that the utilization of the DDM offers 

more advantages than the traditional design approach 

based on elastic analysis. Specifically, when the system 

reliability indices fell within the range of ≤3, they found 

that similar structural reliability was achieved for both 

unweighted and weighted unit pallet loading. This 

observation demonstrated the consistency between the 

load combination factors and their corresponding 

coefficients of variation. Overall, the researchers 

concluded that incorporating sectional imperfections in 

the analysis model did not yield any discernible benefits 

in terms of the adopted system resistance factor. 

 

2.0 METHODOLOGY 
2.1 Development of Limit State Functions  

A limit state function is a representation of a 

specific failure mode and it establishes a connection 

between various parameters. Its development is a 

fundamental aspect of structural engineering and plays a 

vital role in the design and construction of safe and 

efficient structures. In this study, the failure functions 

were developed according to the provisions of [12] for 

the design of steel structures. 

 

2.1.1 Bending Limit State Function 

The limit state of bending happens when the 

bending moments or tensile stresses are more than what 

is necessary for the structure to be safe and functional 

before failing. Equation 1 illustrates its function as 

follows: 

𝐺(𝑋) = 𝑃𝑦𝑆𝑥 − 0.125 ∗ 1.6 ∗ 𝑞 ∗𝑘
⬚ (0.875𝛼 + 1) ∗ 𝐿2      (1) 

 

2.1.2 Shear Limit State Function 

Shear forces that are too great for the structure's 

safety and serviceability standards before failure cause 

the shear limit condition. The shear resistance of the I-

section according to [12] is given in equation 2 as:  
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𝑃𝑣 = 0.60𝑃𝑦𝐴𝑣                       (2)  

 

Where, 

𝐴𝑣 = 𝐷𝑡                         (3) 

 

The maximum shear force is given as: 

𝐹𝑚𝑎𝑥 =
5𝑤𝐿

8
= 0.625 ∗ 1.6𝑞𝑘(0.875𝛼 + 1) ∗

𝐿   (4)  

 

The failure function in shear is generated by subtracting 

equation 4 from equation 2. This is given as shown in 

equation 5 and equation 6: 

𝐺(𝑋) = 0.60𝑃𝑦𝐷𝑡⬚ − 0.625 ∗ 1.6 ∗ 𝑞 ∗𝑘
⬚ (0.875𝛼 +

1) ∗ 𝐿     (5) 

𝐺(𝑋) = 0.60𝑃𝑦𝑡 − 0.625 ∗ 1.6 ∗ 𝑞 ∗𝑘
⬚ (0.875𝛼 + 1) ∗

𝐿

𝐷
                   (6) 

 

Let, 

 
𝐿

𝐷
= 𝜆    (6b) 

 

Equation 6 now becomes: 

𝐺(𝑋) = 0.60𝑃𝑦𝑡 − 0.625 ∗ 1.6 ∗ 𝑞 ∗𝑘
⬚ (0.875𝛼 + 1) ∗

𝜆            (7) 

 

Where kg
= Characteristic dead load; kq

 = 

Characteristic live load; yP
= Bending strength of steel 

 

Equation 7 is the failure function in shear of the doubly 

symmetrical I-steel beam. 

 

2.1.3 Deflection Limit State Function 

The deflection limit state is a conception that 

focuses on the gravity of keeping the deflection of a 

structural member below a certain boundary to ensure the 

structure's performance and safety, alleviating the risk of 

failure, and maintaining stability, functionality, and 

durability. The allowable deflection is shown in equation 

8 as: 

𝛿𝑎𝑙𝑙 =
𝐿

360
   (8) 

 

Eqution 9 presents the maximum value of deflection for 

a uniformly loaded beam as: 

 𝛿 max = 
0.0052𝑤𝐿4

𝐸𝐼 ⬚
  (9) 

 

The limit state function in deflection is developed by 

subtracting Eq. (9) from Eq. (8) and is given in Eq. (10) 

as: 

𝐺(𝑋) =
𝐿

360
−

0.0052𝑤𝐿4

𝐸𝐼
                      (10) 

 

Substituting the value of w from equation 4 into the 

equation 10 gives: 

𝐺(𝑋) =
𝐿

360
−

0.0052∗1.6∗𝑞 ∗𝑘
⬚ (0.875𝛼+1)∗𝐿4

𝐸𝐼
       (11) 

 

Eq. (11) is the failure function in deflection of the doubly 

symmetrical I-steel beam. 

 

2.2 Probabilistic Design of Steel Beam in Bending 

The limit state function in bending is given as: 

𝐺(𝑋) = 𝑃𝑦𝑆𝑥 − 𝑀𝐷 − 𝑀𝐿                  (12) 

 

Where MD and ML are induced moment due to dead and 

live loads respectively. 

 

Induced moment due to dead and live loads are shown in 

equation 13 and equation 14 respectively. 

𝑀𝐷 =
𝑔𝑘𝐿2

8
              (13) 

𝑀𝐿 =
𝑞𝑘𝐿2

8
    (14) 

 

Let: 

𝑃𝑦 = 𝑋1; 𝑔𝑘 = 𝑋2; 𝑞𝑘 = 𝑋3 (14b) 

 

Equuation 12 now becomes: 

𝐺(𝑋) = 𝑋1 ∗ 𝑆𝑥 −
𝑋2𝐿2

8
−

𝑋3𝐿2

8
 (15) 

 

Or 

𝐺(𝑋) =
8𝑆𝑥𝑋1

𝐿2 − 𝑋2 − 𝑋3  (16) 

 

Let the coefficient of X1 be b. Therefore, 
8𝑆𝑥

𝐿2 = 𝑏    (17) 

 

Eq. (16) now becomes: 

𝐺(𝑋) = 𝑏𝑋1 − 𝑋2 − 𝑋3  (18) 

 

The statistics of the design parameters in 

equation 18 are used as input variables in the MATLAB 

code and the value of b corresponding to the target 

reliability index of 3.0 recommended for beams in 

flexure is obtained by optimization. 

 

2.3 Reliability Analysis 

The design process for a doubly symmetric I-

steel beam, subject to uncertain dead and live loads of 

20KN/m and 10KN/m respectively, was conducted in 

accordance with the design specifications outlined in 

[12] A UB section with dimensions of 406*140*46Kg/m 

was determined to meet the necessary criteria for 

bending, shear, and deflection. 

 

The characteristic live load value is kept 

constant at 20KN/m while the varying load ratio values 

considered are 0.5, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0 and 

2.25 respectively. The values of the characteristic dead 

load corresponding to the above load ratios are 10KN/m, 

15KN/m, 20KN/m, 25KN/m, 30KN/m, 35KN/m, 

40KN/m and 45KN/m respectively. The deterministic 

design for the plastic section modulus of the I-beam 

corresponding to the characteristic dead and live loads 

was carried out and the results obtained are compared 

with the results of the probabilistic design at target 

reliability indices of 3.0 and 3.80 respectively. The 
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probabilistic models for the basic random variables are 

presented in Table 1. 

 

Table 1: Probabilistic models of the basic random variables 

S/N Variables Unit Type of probability 

distribution 

Mean Standard 

deviation 

Coefficient of 

variation 

1 Py N/mm2 Normal 275 27.5 0.10 

2 qk kN/m Normal 20 5 0.25 

3 Ix mm4 Normal 475400000 23770000 0.05 

4 E N/mm2 Normal 205000 10250 0.05 

5 L mm Normal 8000 400 0.05 

6 D mm Normal 528.3 26.415 0.05 

7 Sx cm3 Normal 2059000 102950 0.05 

8 α - Fixed Varying   

9 t mm Normal 9.6 0.48 0.05 

10 D/L - Fixed Varying - - 

11 gk kN/m Normal Varying - 0.10 

 

2.3.1 First Order Reliability Analysis 

The limit state function 𝐺(𝑋) is a function of 

the basic random variables. 𝐺(𝑋)  is the limit state 

function such that 𝐺(𝑋) < 0 represents unsafe state of a 

structure, 𝐺(𝑋) > 0  represents the safe state of a 

structure and 𝐺(𝑋) = 0  represents the demarcation 

between the safe and unsafe state of the structure 

respectively.  

 

Let the limit state function in the space of n-dimensional 

input variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 be given by:  

𝐺 = 𝑔(𝑋1, 𝑋2, . . . , 𝑋𝑛) = 0⬚  (19)   

 

Also, 

Let the vector of the be random variables with second 

moment statistics 𝐸(𝑋)  and 𝐶𝑜𝑣(𝑋, 𝑋′)  be 𝑋 =
[𝑋1, 𝑋2, . . . , 𝑋𝑛]′.  

 

The normalized random variables 𝑦1, 𝑦2, . . . , 𝑦𝑛 are 

introduced by a suitable one to one linear mapping 𝑋 =
𝐿(𝑦)such that 𝑦 = 𝐿−1(𝑋). The corresponding space of 

y is then defined by the transformation: 

𝑋 = 𝐿(𝑦), 𝑦 = 𝐿−1(𝑋)   (20) 

 

Applying equation 20 maps equation 19 into: 

ℎ(𝑦1, 𝑦2, . . . , 𝑦𝑛) = 0⬚  (21) 

 

Where the function h is defined by: 

ℎ(𝑦) = 𝑔[𝐿(𝑦)]     (22) 

 

Equation (22) represents the failure function in 

normalized coordinate. The mean value of y is the origin 

and the projection of y on the arbitrary straight line 

through the origin is the random variable with the 

standard deviation of unity.  

 

The reliability index 𝛽 is the distance between 

the origin and the failure surface in the normalized 

coordinate. It is given by:  

𝛽 = 𝑚𝑖𝑛⟨√∑(𝑦1
2 + 𝑦2

2+. . . . . +𝑦𝑛
2) |ℎ(𝑦1, 𝑦2, . . . , 𝑦𝑛)⟩ = 0

                                                                   (23) 

 

Equation (23) is minimized subject to the constraint that

( ) 0...,,, 21 =nyyyh
. The design points on the 

failure surface are obtained by optimization. 

 

In First-Order reliability method, all non-

normal random variables must first be transformed to 

their equivalent normal random variables before they can 

be used. This requires that the distribution function of the 

basic variable and the equivalent normal variable are 

equated at the design point as: 

𝛷 (
𝑥𝑖

∗−𝜇𝑥𝑖
𝑁

𝜎𝑥𝑖
𝑁 ) = 𝐹𝑥𝑖(𝑥𝑖

∗)   (24) 

 

Where 𝛷(⋅)  = cumulative distribution function of the 

standard normal variable at the design point; 𝜇𝑥𝑖
𝑁 , 𝜎𝑥𝑖

𝑁 = 

mean and standard deviation of the equivalent normal 

variable at the design point respectively; 𝐹𝑥𝑖(𝑥𝑖
∗)  = 

cumulative distribution function of the original non-

normal variables. 

 

The mean of the equivalent normal variable at the design 

point is given by: 

𝜇𝑥𝑖
𝑁 = 𝑥𝑖

∗ − 𝛷−1[𝐹𝑥𝑖(𝑥𝑖
∗)]𝜎𝑥𝑖

𝑁  (25) 

 

The distribution function of the basic variable and the 

equivalent normal variable are equal  

at the design point:  
𝜑

𝜎𝑥𝑖
𝑁 (

𝑥𝑖
∗−𝜇𝑥𝑖

𝑁

𝜎𝑥𝑖
𝑁 ) = 𝑓𝑥𝑖(𝑥𝑖

∗)   (26) 

 

Where 𝜑(⋅) and 𝑓𝑥𝑖(𝑥𝑖
∗)  = probability distribution 

function of the equivalent standard normal and the 

original non-normal random variable respectively.  

 

Applying equation 25; 

𝛷−1[𝐹𝑥𝑖(𝑥𝑖
∗)]𝜎𝑥𝑖

𝑁 = 𝑥𝑖
∗ − 𝜇𝑥𝑖

𝑁  (27) 
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Applying Equation (26), the standard deviation of the 

equivalent normal variables are given as: 

𝜎𝑥𝑖
𝑁 = 𝜑

(𝛷−1[𝐹𝑥𝑖(𝑥𝑖
∗)])

⬚

𝑓𝑥𝑖(𝑥𝑖
∗)

  (28) 

 

3.0 RESULTS AND DISCUSSION 
The results of the MATLAB program 

automated reliability analysis of a doubly symmetric I-

section steel beam are presented in Figure 1 to Figure 6 

respectively and Table 2. 

 

 
Figure 1: Relationship between reliability index and beam span or varying load ratio (Bending limit state) 

 

 
Figure 2: Relationship between reliability index and beam span for varying load ratio (Shear limit state) 

 

 
Figure 3: Relationship between reliability index and beam span for varying load ratio (Deflection limit state) 

 

 
Figure 4: Relationship between reliability index and beam span for varying load ratio (Bending, shear and deflection limit state) 
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Figure 5: Relationship between reliability index and lambda at alpha = 1.0 (Shear limit state) 

 

 
Figure 6: Relationship between load ratio and plastic section modulus values for deterministic and reliability-based design 

 

Table 2: Values of Plastic section modulus (m3) for varying load ratios obtained from code-based design and 

reliability-based design at target reliability indices of 3.0 and 3.80 

Load Ratio 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 

BS 5950: Part 1 (1985) 1472 1696 1919.90 2143.90 2368 2591.60 2816 3040 

RBD (Beta = 3.0) 1520 1720 1920 2120 2288 2560 2768 2928 

RBD (Beta = 3.8) 1744 1960 2192 2424 2640 2880 3136 3360 

 

The MATLAB code employed in this study 

yielded the reliability indices for the bending, shear, and 

deflection limit states. These indices were determined 

through the utilization of the first-order reliability 

method. The obtained results are showcased in Figure 1 

to Figure 3 which demonstrate the relationship between 

the reliability indices and varying load ratios for each 

limit state. It is evident from the figures that an increase 

in beam span and load ratio led to a decrease in the 

reliability indices for the bending, shear, and deflection 

failure modes. This observation aligns with the 

conclusions drawn by [13] who found that safety levels 

decline with an increase in beam span and load ratio. 

 

Based on the data presented in Figure 1, the 

safety indices ranged from -1.419 to 5.708, with an 

average value of 3.145. Similarly, Figure. 2 showcases 

the implied safety indices from 2.237 to 7.357, with an 

average value of 4.798. Furthermore, Figure 3 

demonstrates that the implied safety indices vary from -

0.889 to 9.98, with an average value of 4.546. Notably, 

Figure 1 to Figure 3 shows that the average values of the 

implied safety indices for shear and deflection limit 

states exceed the recommended range of the target safety 

index, which is 3.3 to 3.7, for structures with minor to 

large consequences of failure [14]. In addition, for beam 

spans beyond 8.5m and load ratios surpassing 1.0, the 

safety of the beam cannot be ensured as indicated by the 

negative values of the safety indices [13, 15].  

 

Figure 4 illustrates the range of implied safety 

indices for the bending limit state, which extends from -

0.582 to 4.561, with an average value of 1.990. Similarly, 

for the shear limit state, the implied safety indices vary 

from 3.601 to 6.412, with an average value of 5.007. 

Additionally, the values of the implied safety indices for 

the deflection limit state range from 0.0399 to 8.87, with 

an average value of 4.455, as portrayed in Figure 4. 

Figure 5 depicts the correlation between the safety 

indices and the beam span-overall depth ratio (Lamda) at 

a constant load ratio of 1.0. The data from Figure 5 

reveals a clear decrease in the reliability index as the 

beam span-overall depth ratio increases. It is crucial to 

emphasize that exceeding a beam span-overall depth 
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ratio of 42 would compromise the safety of the beam, as 

indicated by the negative value of the reliability index. 

These findings align with the conclusions drawn by [16] 

which underscore the threat posed to the beam's safety 

by the negative values of the reliability indices. Hence, 

when the load ratio is 1.0 and the beam span measures 

8.5m, it can be deduced that the design is crucial in terms 

of bending, secure in deflection, and satisfactory in 

shear. Additionally, the probabilistic design of the 

doubly symmetric beam was executed under the bending 

limit state, considering predefined reliability indices of 

3.0 and 3.8, correspondingly. The deterministic values of 

the plastic section modulus were compared with the 

design values based on reliability, yielding the outcomes 

displayed in Table 2. It can be clearly seen from the 

Table, that the beam's deterministic and probabilistic 

design was carried out to establish the plastic section 

modulus at various load ratios, namely 0.5, 0.75, 1.0, 

1.25, 1.5, 1.75, 2.0, and 2.5. It is apparent that for load 

ratios of 0.50 and 0.75, with a target reliability index of 

3.0, the plastic section modulus experiences an increase 

of 3.3% and 1.42% correspondingly. 

 

At load ratio of 1.0, the values of the plastic 

section modulus are almost identical. However, at load 

ratios of 1.25, 1.5, 1.75, 2.0 and 2.25, the readings of the 

plastic section modulus reduce by 1.13%, 3.49%, 1.23%, 

1.73% and 3.83% respectively. This results to savings in 

the quantity of materials of I-steel beam. As the beam 

was designed for a target reliability index of 3.80 to 

reflect the consequences of failure for 50 years design 

period, the values of the plastic section modulus of the 

beam increases by 18.5% for 0.5 load ratio, 15.6% for 

0.75 load ratio, 14.2% for 1.0 load ratio, 13.1% for 1.25 

load ratio, 11.5% for 1.5 load ratio, 11.1% for 1.75 load 

ratio, 11.4% for 2.0 load ratio and 10.5% for 2.25 load 

ratio respectively.  

 

4.0 CONCLUSIONS 
The findings of the probabilistic evaluation of a 

doubly symmetric I-steel beam in relation to the limit 

state of bending, shear, and deflection, as per the design 

requirements outlined in [12] have been presented. The 

reliability estimates were obtained using a MATLAB 

automated program developed based on the First-Order 

Reliability Method. It was observed that the reliability 

indices decreased as the load ratio and beam span 

increased for the bending, shear, and deflection failure 

modes under consideration. It is not advisable to exceed 

a beam span of 8.5m and a load ratio of 1.0, as these 

values yielded negative safety indices.  

 

When the load ratio was kept constant at 1.0, the 

reliability index decreased as the beam span-overall 

depth ratio increased. A beam span-overall depth ratio 

exceeding 42 would compromise the safety of the beam. 

The analysis showed that the design is critical in terms of 

bending, safe in terms of deflection, and satisfactory in 

terms of shear. The probabilistic design results for the 

plastic section modulus of the beam in bending, targeting 

a reliability index of 3.0 and a constant load ratio of 1.0, 

indicated material savings for the I-steel beam by 

considering different beam section choices based on the 

plastic section modulus values. However, when the beam 

was designed for a target reliability index of 3.80 to 

account for failure consequences over a 50-year design 

period, the values of the plastic section modulus of the 

beam increased. 
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