
 

Citation: Onodagu, P. D, Uzodinma, F. C, Aginam, H. C (2024). Vibration Analysis of Uniform Flexible Beams under 

Large Deformation with Uniformly Continuous Mass Elements Using the Equivalent Pseudolinear System. Saudi J Eng 

Technol, 9(5): 214-230. 

 

         214 

 

 

 
 

Saudi Journal of Engineering and Technology 
Abbreviated Key Title: Saudi J Eng Technol 

ISSN 2415-6272 (Print) | ISSN 2415-6264 (Online) 

Scholars Middle East Publishers, Dubai, United Arab Emirates 

Journal homepage: https://saudijournals.com  
 

 Original Research Article 

 

Vibration Analysis of Uniform Flexible Beams under Large Deformation 

with Uniformly Continuous Mass Elements Using the Equivalent 

Pseudolinear System 
Onodagu, P. D1*, Uzodinma, F. C1, Aginam, H. C1 

 

1Department of Civil Engineering, Nnamdi Azikiwe University, Awka, Nigeria 
 

DOI: 10.36348/sjet.2024.v09i05.001                                        | Received: 23.03.2024 | Accepted: 29.04.2024 | Published: 06.05.2024 
 

*Corresponding author: Onodagu, P. D 
Department of Civil Engineering, Nnamdi Azikiwe University, Awka, Nigeria 

 

Abstract  
 

This paper analyses vibration of uniform flexible simply supported rectangular isotropic beam under large deformation 

with uniformly distributed mass elements. The method of equivalent pseudolinear systems was employed. The deformation 

of the beam was assumed to be large and the beam was also assumed to be inextensible. The expressions for elastic and 

nonlinear bending moments were determined. The numerical values of horizontal displacements of the movable support, 

and the equivalent lengths at various depth-to-breadth (aspect) ratios were determined. The corresponding equivalent 

pseudolinear systems for various nonlinear bending moment diagrams at various aspect ratios were determined. 

Consequently the concentrated loads yielding the equivalent pseudolinear systems were converted to point masses using 

the gravitational acceleration; and subsequently a unit load system was applied successively and independently at each 

mass point. The Vereshchagin’s method was applied to determine the displacements for canonical equations of motion. 

Non-trivial solution of the canonical equations at each aspect ratio was sought for the desired eigenvalues. The first mode 

frequencies at aspect ratios, β = 1.00 and β = 1.25 are complex eigenvalues. Also the natural frequencies exhibit hard-

spring type with aspect ratios; and the fundamental frequencies for all the aspect ratios are at seventh mode. Conclusively, 

the dynamic stability of the flexible rectangular beam of 0.25m-breadth and 15m-undeformed length is not guaranteed 

when the aspect ratio is less than or equal to 1.25. It is also concluded that deepness of the flexible rectangular beam loaded 

with uniformly distributed mass elements influences the vibratory characteristics.  

Keywords: Vibration, Large Deformation, Equivalent Pseudolinear, Simply Supported, Flexible Beam, Continuous Mass 

Element, Canonical Equations, Aspect Ratio, Complex Eigenvalue, Fundamental Frequency. 
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1.0 INTRODUCTION 
The vibrational behaviour and large 

deformation characteristics associated with flexible 

beams have been imposing a lot of challenges in the 

applications of flexible beam structures. Sequel to their 

extremely vibratory and large deformation 

characteristics, a lot of research works has been done to 

find solutions to the problems of flexible beams. The 

earliest research works on the analysis of flexible beams 

were carried out in the span of 18th century to the middle 

of 19th century by the Bernoulli family: Jacob, Johann 

and Daniel, and later by L. Euler, J. L. Lagrange and 

G.A.A Plana (Fertis, 1999). In their works, they sought 

the solution of various problems of elastica by using the 

relation between the curvature and the bending moment. 

However, with the advances in science of 

materials and technological innovations in industries, 

there have been increases in environmental and industrial 

demands on the applications of flexible beam structures. 

Flexible beam structures have been used as structural 

systems in areas such as marine riser system, aircraft 

wings, flexible manipulator system, flapping wing of 

robotic aircraft, fire rescue turntable ladder system, truss 

structures, space telescopes and space stations, etc. (He 

and Liu, 2019; Pai and Palazotto, 1996). It is very 

important to recognize that a beam can be classified as a 

flexible beam if the length of the beam is extremely very 

large when compared to the other two dimensions of the 

beam.  

 

https://saudijournals.com/sjeat
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Consequent upon these various applications, 

many research works have been done on the analysis and 

design of flexible beam structures; and furthermore, a lot 

of research works has been done on the methods for 

vibration control of flexible structures. 

 

Weeks and Jackson (1971) investigated on the 

vibration characteristics of flexible cantilever beam 

under a nonlinear deformed equilibrium state by using 

the perturbation method. 

 

Fertis and Afonta (1992), Fertis and Lee (1991), 

Fertis, Taneja and Lee (1991), Fertis and Afonta (1993) 

and Fertis and Schubert (1994) generally employed the 

method of equivalent system to either solve vibrational 

problem of undamped variable stiffness flexible bars or 

to carry out inelastic analysis of prismatic and 

nonprismatic structural members of flexible 

characteristics. Modal analysis of a flexible beam 

attached with multiple absorbers was carried out (Li et 

al., 2012). Also, large-deformation analysis of flexible 

beam was investigated by Pai and Palazotto (1996) and 

Kwark (1998) analysed the dynamics of slewing flexible 

beams by modeling new admissible functions based on 

discretization process. Chen and Levy (1999) used smart 

damping structures to carry out vibration analysis and 

vibration control of flexible beam with the intention to 

determine the effects of temperature on frequency and 

loss factor for the structure. 

 

Furthermore, into the 21st century, a quite lot of 

research works has been unabatedly done on flexible 

beam structures. Nayfeh et al., (2003) investigated the 

free vibrations of flexible beams undergoing overall 

motions in two dimensions by using the Euler-Bernoulli 

beam theory. Also, Shvartsman (2009) investigated on 

the responses of flexible cantilever beam subjected to 

two follower forces under static large deflection 

problem. Nonlinear dynamic analysis of the Timoshenko 

flexible beams using the continuous wavelet transform 

and the traditional Fourier transform methods was 

carried out (Awrejcewicz et al., 2012). 

 

Gafsi et al., (2014) investigated on the effect of 

confinement of vibrations for variable-geometry 

nonlinear flexible beam. Trivedi et al., (2016) employed 

Hamiltonian modeling to analyse the buckling behaviour 

of a nonlinear Euler-Bernoulli flexible beam with 

actuation at the bottom. Jianshu et al., (2017) employed 

the sub-structuring technique for dynamic analysis of 

flexible beams with large deformation. Further research 

works include Zhang and Vang (2020) and Guo et al., 

(2020) who studied the vibration of flexible beam with 

interior fluid and the dynamic analysis of the flexible 

hub-beam system based on rigid-flexible coupling 

mechanism respectively. Fan and Zhu (2016) worked on 

the accuracy of singularity-free formulation of a three 

dimensional curved Euler-Bernoulli beam with large 

deformations and large rotations for flexible multibody 

dynamic analysis. 

From the review of the previous research works 

on flexible beam structures, it is certain that there exists 

no close-form solution to determine the exact behaviour 

of nonlinear flexible beam structures. Therefore, this 

paper proposes to employ very simple and straight 

forward methods to determine the vibrational 

frequencies of large deformation of simply supported 

flexible rectangular isotropic beam, which are closely 

approximating the exact solutions to nonlinear flexible 

beam problems. This proposition is to be achieved by 

using these set down objectives: First is to utilize the 

Fertis equivalent pseudolinear system to linearize the 

nonlinear responses of flexible beams with simply 

supported boundary conditions. Secondly, this paper is 

to employ the Mohr-Vereshchagin’s methods to 

determine the canonical equations of motion (Darkov, 

1983). Thirdly, it determines the associated vibrational 

natural frequencies. 

 

2.0 ANALYTICAL FORMATION 
In this paper, the vibrational responses of 

uniform flexible beam with simply supported boundary 

conditions under large deformations, and subjected to 

uniformly distributed mass elements will be studied. The 

analytical models to be employed are the Fertis 

pseudolinear equivalent system model (Fertis, 1999); 

and the Mohr-Vereshchagin’s methods (Darkov, 1983). 

 

2.1 Derivation of Pseudolinear Equivalent Systems 

The pseudolinear equivalent system model was 

developed by D.G. Fertis (Fertis, 1999). This model 

tends to solve large deflection of nonlinear problem by 

utilizing an equivalent pseudolinear system, which has 

an identical deflection curve as the initial nonlinear 

problem. In the process, the initial nonlinear problem is 

transformed into a pseudolinear equivalent system, 

which will have uniform stiffness EI throughout its 

equivalent length, and which may be loaded differently 

from the original nonlinear system and this can be solved 

by applying linear analysis. 

 

The derivation of pseudolinear equivalent 

system can be developed by employing the Euler-

Bernoulli law, which states that if the deflection of the 

beam is not small, the slope of the deflection can never 

be neglected in the expression describing the curvature. 

Also, the law states that the bending moment M is 

proportional to the change in the curvature developed as 

a result of the action of the externally applied load 

(Fertis, 1999). Thus, this can be mathematically stated as 

given in Eqn. (2.1). 

 
1

𝑟
=

𝑑∅

𝑑𝑥𝑎
=

−𝑀𝑥

𝐸𝑥𝐼𝑥
                                                (2.1) 

 

Where r is the radius of curvature, ∅ is the slope 

at any given point xa along the arc length of the bending 

beam, Ex is the modulus of elasticity which may be 

varied along the length of the beam, Ix is the cross-
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sectional moment of inertia which may also be varied 

along the length of the beam, and Mx is the bending 

moment at any given point x along the length of the 

beam. 

 

In the derivation, it is fundamentally assumed 

that the beam structural system is inextensible so that the 

arc length of the deflection curve is equal to the initial 

length of the beam structure. 

 

In this paper, the rectangular coordinate system of x and y is adopted so that Eqn. (2.1) can be expressed as given in Eqn. 

(2.2).  

 
𝑦′′

[1 + (𝑦′)2]
3

2⁄
=

−𝑀𝑥

𝐸𝑥𝐼𝑥
                                                          (2.2)  

 

Where, 

 

𝑦′′ =
𝑑2𝑦

𝑑𝑥2 and 𝑦′ =  
𝑑𝑦

𝑑𝑥
                                                         (2.3) 

 

Eqn. (2.2) is a second order nonlinear equation in which its exact solution yields the true shape of the deflection 

configuration (elastica) of a flexible member. 

 

Let the variable stiffness ExIx be defined by the expression as given in Eqn. (2.4). 

 

𝐸𝑥𝐼𝑥 = 𝐸1𝐼1𝑢(𝑥)𝑣(𝑥)                                                          (2.4) 
 

Where u(x) represents the variation of Ex with respect to fixed value E1 and v(x) represents the variation of Ix with 

respect to fixed value I1. 

 

Consequently, Eqn. (2.2) can be written as given by Eqn. (2.5). 

 
𝑦′′

[1 + (𝑦′)2]
3

2⁄
=

−1

𝐸1𝐼1
.

𝑀𝑥

𝑢(𝑥)𝑣(𝑥)
                                   (2.5) 

 

By integrating Eqn. (2.5) twice with respect to x, yields the transverse displacement y(x) as expressed in Eqn. (2.6) (Fertis, 

1999). 

 

𝑦(𝑥) =
1

𝐸1𝐼1
∫{−∫[1 + (𝑦′)2]

3
2⁄

𝑀𝑥𝑑𝑥

𝑢(𝑥)𝑣(𝑥)
} 𝑑𝑥 + 𝐶1 ∫𝑑𝑥 + 𝐶2                                       (2.6) 

 

Where C1 and C2 are undetermined constants of integration, which can be determined by using the boundary 

conditions. Let there be a structural beam element with constant stiffness E1I1 which has length and reference axes that are 

of identical with the one in Eqn.(2.6); then the expression for its large deflection ye is as given by Eqn. (2.7). 

 

𝑦𝑒 =
1

𝐸1𝐼1
∫{− ∫[1 + (𝑦′)2]

3
2⁄ 𝑀𝑒𝑑𝑥}𝑑𝑥 + 𝐾1 ∫𝑑𝑥 + 𝐾2                                                  (2.7) 

 

Where Me is the bending moment at any given cross-section x, and K1 and K2 are the undetermined constants of integration.  

Thus if y and ye as given in Eqns. (2.6) and (2.7) respectively are identical, then it implies that C1 = K1 and C2 =K2 so that:  

 

∫{−∫[1 + (𝑦′)2]
3

2⁄
𝑀𝑥𝑑𝑥

𝑢(𝑥)𝑣(𝑥)
} 𝑑𝑥 = ∫{−∫[1 + (𝑦′)2]

3
2⁄ 𝑀𝑒𝑑𝑥}𝑑𝑥                             (2.8) 

 

Therefore given the conditions which specify that C1 = K1 and C2 = K2 are to be satisfied, then it implies that these 

conditions are absolutely satisfied only and only if the two beam structural elements have the same length and boundary 

conditions; and these condition are particularly satisfied if 𝑦𝑒
′ = 𝑦′. Thus it can be written that: 

 

𝑀𝑒 =
𝑀𝑥

𝑢(𝑥)𝑣(𝑥)
                                                                     (2.9) 

 

From Eqn. (2.8), it can be stated that: 
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[1 + (𝑦′)2]
3

2⁄ 𝑀𝑒 = [1 + (𝑦′)2]
3

2⁄
𝑀𝑥

𝑢(𝑥)𝑣(𝑥)
                                        (2.10) 

 

Therefore, for the analysis of large deflections and rotations, where (𝑦′)2 and (𝑦𝑒
′)2 cannot be neglected, then 

Eqn. (2.10) suggests that the moment 𝑀𝑒
′  of equivalent pseudolinear system of constant E1I1 can be evaluated from the 

expression as stated in Eqn.(2.11) (Fertis, 1999). 

 

𝑀𝑒
′ = [1 + (𝑦′)2]

3
2⁄ ∙

𝑀𝑥

𝑢(𝑥)𝑣(𝑥)
= 𝑍𝑒 ∙

𝑀𝑥

𝑢(𝑥)𝑣(𝑥)
                             (2.11) 

 

Where 𝑍𝑒 = [1 + (𝑦′)2]
3

2 ⁄  (2.12)  

 

From Eqn. (2.5), it is deduced that the differential equation representing the pseudolinear equivalent system of 

constant stiffness E1I1 is as given by Eqn. (2.13). 

 

𝑦′′ =
𝑀𝑒

′

𝐸1𝐼1
                                                                                                   (2.13) 

 

Upon the determination of 𝑀𝑒
′ , which is the 

product of elastic bending moment 𝑀𝑥  and [1 +

(𝑦′)2]
3

2⁄  divided by the stiffness variations 𝑢(𝑥)𝑣(𝑥) 

then the transformation that yields the pseudolinear 

equivalent system of constant stiffness E1I1, with its 

characteristic loading is evaluated. 

 

In this paper, the concentrated loads and the 

associated loading points as obtained in the pseudolinear 

equivalent system will be transformed into point masses 

and mass locations respectively, and those masses will 

be used in the evaluation of vibrational frequencies by 

using the Mohr-Vereshchagin’s methods (Darkov, 1983) 

 

2.2 Application to Simply Supported Flexible Beam 

Fig. 1 shows an elastic isotopic homogeneous 

simple supported flexible beam of rectangular cross-

section with the characteristic dimensions defined as 

follows: L is the length, b is the breadth and h is the 

thickness. The beam parameters are invariant in young 

modulus E and mass density ρ. 

 

 
Fig. 1 (i) simply supported flexible beam loaded with uniformly distributed mass element; and showing the 

deflected configuration 

 (ii) Shows the cross-section of the beam 

 

From Fig. 1 (ii), the expression for moment of inertia is given as in Eqn. (2.14). 

 

𝐼 =
𝑏ℎ3

12
                                                                                           (2.14) 

 

Let 𝛽 = ℎ
𝑏⁄  𝑜𝑟 ℎ = 𝛽𝑏                                                              (2.15) 

 

Where 𝛽 is the beam depth-to-breadth (aspect) ratio. 
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By substituting for h from Eqn. (2.15) into Eqn. (2.14) yields Eqn. (2.16) 

𝐼 =
𝑏4𝛽3

12
                                                                           (2.16) 

 
From Fig. 1 (i), the bending moment 𝑀𝑥 at any point in the interval 0 ≤ 𝑥 ≤ 𝐿𝑜 is given as expressed in Eqn. (2.17) 

 

𝑀𝑥 =
𝑞𝐿𝑥

2
−

𝑞𝑥𝑥𝑎

2
                                                           (2.17) 

 

Where the expression for 𝑥𝑎 is defined as given in Eqn. (2.18) (Fertis, 1999). 

 

𝑥𝑎 = ∫ √1 + (𝑦′)2
𝑥

0

𝑑𝑥                                                  (2.18)  

 

By substituting for 𝑥𝑎 in Eqn. (2.17) yields: 

 

𝑀𝑥 =
𝑞𝐿𝑥

2
−

𝑞𝑥

2
∫ √1 + (𝑦′)2

𝑥

0

𝑑𝑥                              (2.19) 

 

Furthermore, by substituting Eqn. (2.19) into Euler-Bernoulli equation of Eqn. (2.2) yields: 

𝑦′′

[1 + (𝑦′)2]
3

2⁄
=

𝑞𝑥

2𝐸𝐼
{−𝐿 + ∫ √1 + (𝑦′)2

𝑥

0

𝑑𝑥}    (2.20) 

 

Eqn. (2.20) is an expression that defines the exact nonlinear differential equation for the flexible beam problem. 

The close-form solution to Eqn. (2.20) is difficult; but a very high approximation to the solution of Eqn. (2.20) can be 

achieved by assuming that 𝑥𝑎 is a function of horizontal displacement of the movable edge of the beam, and it is defined 

as given in Eqn. (2.21) (Fertis, 1999). 

 

𝑥𝑎 = 𝑥 + ∆(𝑥)                                                                  (2.21) 
 

Where Δ(x) may be a variation in x-quantity. Suppose Δ(x) is constant so that Δ(x) = Δ, then Eqn.(2.21) becomes Eqn. 

(2.22). 

 

𝑥𝑎 = 𝑥 + ∆                                                                       (2.22) 
 

By substituting Eqn. (2.22) into Eqn. (2.17) yields: 

 

𝑀𝑥 =
𝑞𝐿𝑥

2
−

𝑞𝑥

2
(𝑥 + ∆) =

𝑞𝑥

2
(𝐿 − ∆) −

𝑞𝑥2

2
        (2.23) 

 

By substituting Eqn.(2.23) into the Euler-Bernoulli equation of Eqn. (2.2), yields Eqn. (2.24).  

 
𝑦′′

[1 + (𝑦′)2]
3

2⁄
=

𝑞

2𝐸𝐼
[𝑥2 − (𝐿 − ∆)𝑥]                     (2.24) 

 

Let 

𝜆(𝑥) =
𝑦′′

[1 + (𝑦′)2]
3

2⁄
                                                 (2.25) 

 

Then Eqn. (2.24) can be written as: 

𝜆(𝑥) =
𝑞

2𝐸𝐼
[𝑥2 − (𝐿 − ∆)𝑥]                                      (2.26) 

 

By integrating Eqn. (2.26) once with respect to x yields Eqn. (2.27). 

 

∫𝜆(𝑥)𝑑𝑥 =
𝑞

12𝐸𝐼
[2𝑥3 − 3(𝐿 − Δ)𝑥2] + 𝐶           (2.27) 

Or 
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𝑦′

√1 + (𝑦′)2
=

𝑞

12𝐸𝐼
[2𝑥3 − 3(𝐿 − Δ)𝑥2] + 𝐶                      (2.27𝑎) 

 

Where C is the constant of integration, which can be determined from the boundary condition that the slope, 𝑦′ is zero at 
𝐿𝑜

2⁄  where 𝐿𝑜 = 𝐿 − Δ                                                               (2.28) 

 

From the boundary condition that 𝑦′ = 0 at 𝑥 =
𝐿𝑜

2⁄ ’ then: 

 

𝐶 =
𝑞

12𝐸𝐼
[
(𝐿 − Δ)3

2
] (2.29) 

 

Thus Eqn. (2.27a) can be written as in Eqn. (2.30). 

 
𝑦′

√1 + (𝑦′)2
=

𝑞

24𝐸𝐼
[4𝑥3 − 6(𝐿 − Δ)𝑥2 + (𝐿 − Δ)3]            (2.30) 

 

By solving Eqn. (2.30) with respect to 𝑦′ yields Eqn. (2.31). 

 

𝑦′(𝑥) =
𝐺(𝑥)

√1 − [𝐺(𝑥)]2
                                                                  (2.31) 

 

Where  

𝐺(𝑥) =
𝑞

24𝐸𝐼
[4𝑥3 − 6(𝐿 − Δ)𝑥2 + (𝐿 − Δ)3]                       (2.32) 

 

Or by invoking Eqn. (2.16), then Eqn. (2.32) becomes: 

 

𝐺(𝑥) =
𝑞

2𝐸𝑏4𝛽3
[4𝑥3 − 6(𝐿 − Δ)𝑥2 + (𝐿 − Δ)3]                   (2.33) 

 

Here the unknown quantity to be determined is Δ, and it can be determined by selecting Δ in a trial and error process, which 

will satisfy the expression given in Eqn. (2.34). 

 

𝐿 = ∫ √1 + (𝑦′)2𝑑𝑥                                                                  (2.34)
𝐿𝑜

0

 

 

Where L is the initial undeformed length and 𝐿𝑜 is as defined in Eqn. (2.28). 

 

Upon the determination of the exact value of Δ, 

then the value of 𝑀𝑒
′  of Eqn. (2.11) is determined at 

various points of x-values. 

 

2.3 RESULTS 
In this work, the investigation was carried out at 

various aspect ratios of beam thickness to beam 

breadth, (𝛽 =
ℎ

𝑏
), ranging from 1 to 2 at a step size of 

0.25, and the value of Δ for each aspect ratio was 

determined and consequently the values of elastic 

bending moments, 𝑀𝑥 and equivalent nonlinear bending 

moments, 𝑀𝑒
′  were determined. Tables 2.1, 2.2, 2.3, 2.4 

and 2.5 show the values for 𝑀𝑥 and 𝑀𝑒
′  at aspect ratios 1, 

1.25, 1.50, 1.75 and 2.0 respectively for selected x-point 

values in the interval of 0 ≤ 𝑥 ≤ 𝐿0.  The equivalent 

nonlinear bending moment diagrams and the associated 

equivalent pseudolinear systems for the corresponding 

aspect ratios are shown in Figures 2.1, 2.2, 2.3, 2.4 and 

2.5 respectively. However, the values of 𝑀𝑒
′  at these 

selected x-points were plotted in juxtaposition with the 

equivalent nonlinear bending moment diagrams, from 

which the equivalent pseudolinear systems could be 

determined. 

 

Table 2.1: The values of bending moments for aspect ratio β = 1 

L = 15m; Δ = 0.3375m; Lo = 14.6625m 

x Mx (* 106) Me
’ (* 106) 

0 0 0 

2.095 1.31645 1.47057 
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4.399 2.25746 2.35945 

5.865 2.57987 2.61068 

7.331 2.68736 2.68736 

8.798 2.57979 2.61063 

10.473 2.19383 2.30627 

12.568 1.31618 1.4703 

14.6625 0 0 

 

Table 2.2: The values of bending moments for aspect ratio β = 1.25 

L = 15m; Δ = 0.0954m; Lo = 14.9046m 

x Mx (* 106) Me
’ (* 106) 

0 0 0 

2.129 1.35996 1.40305 

4.258 2.26666 2.29929 

5.962 2.66579 2.67493 

 

Table 2.2: The values of bending moments for aspect ratio β = 1.25, cont’d 

L = 15m; Δ = 0.0954m; Lo = 14.9046m 

7.453 2.77684 2.77684 

8.942 2.66588 2.67501 

10.646 2.26685 2.29947 

12.775 1.36028 1.40338 

14.9046 0 0 

 

Table 2.3: The values of bending moments for aspect ratio β = 1.50 

L = 15m; Δ = 0.02966m; Lo = 14.97034m 

x Mx (* 106) Me
’ (* 106) 

0 0 0 

2.139 1.37231 1.38701 

4.277 2.28677 2.298 

5.988 2.68931 2.69248 

7.485 2.80139 2.80139 

8.982 2.68936 2.69253 

10.693 2.28688 2.29811 

12.832 1.37196 1.38665 

14.97034 0 0 

 

Table 2.4: The values of bending moments for aspect ratio β = 1.75 

L = 15m; Δ = 0.01296m; Lo = 14.98704m 

x Mx (* 106) Me
’ (* 106) 

0 0 0 

2.142 1.3757 1.38155 

4.284 2.29259 2.29707 

5.995 2.69536 2.69663 

7.494 2.80764 2.80764 

8.992 2.69537 2.69664 
 

Table 2.4: The values of bending moments for aspect ratio β = 1.75, cont’d 

L = 15m; Δ = 0.01296m; Lo = 14.98704m 

10.703 2.2926 2.29708 

12.845 1.375573 1.38157 

14.98704 0 0 

 

Table 2 5: The values of bending moments for aspect ratio β = 2.0 

L = 15m; Δ = 0.00567m; Lo = 14.99433m 

x Mx (* 106) Me
’ (* 106) 

0 0 0 

2.142 1.37648 1.37911 
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P1 P7 P6 P5 P4 P3 P2 

4.284 2.29415 2.29617 

5.998 2.698 2.69857 

7.497 2.81037 2.81037 

8.997 2.6979 2.69847 

10.710 2.29426 2.29628 

12.852 1.37666 1.37929 

14.99433 0 0 

 

 
Fig. 2.1 (i): The nonlinear bending moment diagram for β = 1.0 

Fig. 2.1 (ii): The corresponding equivalent pseudolinear system for the beam. 

Key to Fig. 2.1 

P1 = 316165.8111N; P2 = 214358.083N; P3 = 119126.8758N; P4 = 104411.9236N; 

P5 = 129748.6840N; P6 = 217162.3696N; P7 = 302950.3535N 

 

 
Fig. 2.2 (iii): The nonlinear bending moment for β = 1.25 

Fig. 2.2 (iv): The corresponding equivalent pseudolinear system for the beam. 

Key to Fig. 2.2 

Q1 = 238060.1222N; Q2 = 200506.3184N; Q3 = 152108.4842N; Q4 = 136726.5737N; 

Q5 = 152005.0125N; Q6 = 200508.6393N; Q7 = 238082.4607N 
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Fig. 2.3 (v): The nonlinear bending moment diagram for β = 1.50 

Fig. 2.3 (vi): The corresponding Equivalent Pseudolinear system for the beam element 

 

Key to Fig. 2.3 

Z1 = 222344.0419N; Z2 = 195539.2499N; Z3 = 157803.0599N; Z4 = 145470.9419N; 

Z5 = 157801.3927N; Z6 = 195594.8434N; Z7 = 222355.3017N 

 

 
Fig. 2.4 (vii): The nonlinear bending moment diagram for β = 1.75 

Fig. 2.4 (viii): The corresponding Equivalent Pseudolinear system for the beam 

 

Key to Fig. 2.4 

M1 = 217567.6938N; M2 = 193889.3773N; M3 = 159468.2174N; M3 = 159468.2174N;  

M4 = 148154.8358N; M5 = 159425.4564N; M6 = 193884.7088N; M7 = 217569.6549N 
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Fig. 2.5 (ix): The nonlinear bending moment diagram for β = 2.0 

Fig. 2.5 (x): The corresponding equivalent pseudolinear system for the beam. 

Key to Fig. 2.5 

N1 = 215709.6171N; N2 = 193360.1243N; N3 = 160189.4067N; N4 = 149183.0554N;  

N5 = 160186.9235N; N6 = 193312.9831N; N7 = 215727.1415N 

 

2.3.1 The Equivalent Pseudolinear System 

The equivalent pseudolinear system was 

determined by joining the selected points on the 

nonlinear bending moment diagram with straight cords 

(lines) and then the method of statics was employed to 

determine the concentrated loads. These points on the 

nonlinear bending moment diagram have to be adjusted 

to give a system of concentrated loads that would yield 

equivalent stresses to that of initially applied loads on the 

equivalent length of the flexible beam element. 

 

2.3.2 Determination of the Vibration Frequencies 

In this work, the determination of the vibration 

frequencies of uniform flexible beams subjected to 

continuous mass element are approximated by 

considering the concentrated loads on the equivalent 

lengths of the beams as point mass system. These 

concentrated loads were transformed into point masses 

by dividing the concentrated load with the value of 

gravitational acceleration (9.81ms-2). On the successful 

transformation of the concentrated loads to mass system, 

a unit load system was applied successively and 

independently at mass point and the respective resulting 

bending moment diagram was drawn as shown in 

Appendix A. And in accordance with the Mohr- 

Vereshchagin’s methods, these stress diagrams were 

multiplied by one another to yield the displacements for 

canonical equations of motions. Hence the nontrivial 

solution of the canonical equations yields the desired 

vibration frequencies. Table 2.6 shows the point masses 

on the equivalent lengths at the various aspect rations. 

 

Table 2.6: The point masses on the equivalent lengths of the flexible beam system at various aspect ratios 

Point mass, 

mi 

Lo = 14.6625m 

Value (Kg) at 

 β = 1.0  

Lo = 14.9046m 

Value (Kg) at  

β = 1.25  

Lo = 14.97034m 

Value (Kg) at  

β = 1.50 

Lo = 14.98704m 

Value (Kg) at 

 β = 1.75 

Lo = 14.99433m 

Value (Kg) at  

β = 2.0 

m1 32228.9308 24267.0869 22665.0400 22178.1548 21988.7479 

m2 21850.9769 20438.9723 19932.6453 19764.4625 19710.5122 

m3 12143.4124 15505.4520 16085.9388 16255.6797 16329.1954 

m4 10643.4173 13937.4693 14828.8422 15102.4298 15207.2432 

m5 13226.1656 15494.9044 16085.7689 16251.3207 16328.9423 

m6 22136.8369 20439.2089 19938.3123 19763.9866 19705.7067 

m7 30881.7894 24269.3640 22666.1877 22178.3542 21990.5343 

 

2.3.4 The Canonical Equations of Motion 

The canonical equations of motions required to determine the vibration frequencies are as given in Eqn. (2.35). 
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(𝛿11𝑚1 −
1

𝜔2
) 𝑦1 + 𝛿12𝑚2𝑦2 + 𝛿13𝑚3𝑦3 + ⋯+ 𝛿17𝑚7𝑦7 = 0  

𝛿21𝑚1𝑦1 + (𝛿22𝑚2 −
1

𝜔2
) 𝑦2 + 𝛿23𝑚3𝑦3 + ⋯+ 𝛿27𝑚7𝑦7 = 0 

𝛿31𝑚1𝑦1 + 𝛿32𝑚2𝑦2 + (𝛿33𝑚3 −
1

𝜔2) 𝑦3 + ⋯+ 𝛿37𝑚7𝑦7 = 0  

⋮ (2.35) 

𝛿71𝑚1𝑦1 + 𝛿72𝑚2𝑦2 + 𝛿73𝑚3𝑦3 + ⋯+ (𝛿77𝑚7 −
1

𝜔2
)𝑦7 = 0 

 

𝑊ℎ𝑒𝑟𝑒 𝛿𝑖𝑗 is displacement, 𝑚𝑖 is the point mass, ω is the cyclic frequency and 𝑦𝑖  is the amplitude of vibration.  

 

2.3.5 Numerical Experiment 

In this paper, the parameters used for numerical experiment are: 𝐸 = 10.92𝑀𝑃𝑎, 𝜇 = 0.3, L = 15m, b = 0.25m, h = open, 

and 𝛽 = ℎ
𝑏⁄ .  

 

Thus for non-zero amplitude of vibration, then the determinant of the coefficient of 𝑦𝑖 must be zero. Table 2.7 

presents numerical values of the displacements 𝛿𝑖𝑗 for the various aspect ratios, 𝛽𝑖, using the defined parameters.  

 

Table 2.7: The numerical values of displacements 𝜹𝒊𝒋 at various aspect ratios 

𝜹𝒊𝒋 𝜷 = 𝟏. 𝟎 𝜷 = 𝟏. 𝟐𝟓 𝜷 = 𝟏. 𝟓𝟎 𝜷 = 𝟏. 𝟕𝟓 𝜷 = 𝟐. 𝟎 

𝛿11 0.004434 0.002383 0.001398 0.000884 0.000592 

𝛿12 = 𝛿21 0.007237 0.003806 0.002233 0.001411 0.000946 

𝛿13 = 𝛿31 0.007851 0.004435 0.002476 0.001565 0.001049 

𝛿14 = 𝛿41 0.007703 0.004142 0.002429 0.001535 0.001030 

𝛿15 = 𝛿51 0.006923 0.003722 0.002183 0.001380 0.000925 

𝛿16 = 𝛿61 0.005418 0.002913 0.001709 0.001080 0.000724 

𝛿17 = 𝛿71 0.002894 0.001556 0.000912 0.000577 0.000387 

𝛿22 0.013037 0.006620 0.003882 0.002454 0.001646 

𝛿23 = 𝛿32 0.014633 0.007605 0.004461 0.002820 0.001891 

𝛿24 = 𝛿42 0.014632 0.007588 0.004450 0.002813 0.001885 

𝛿25 = 𝛿52 0.013302 0.006889 0.004040 0.002553 0.001712 

𝛿26 = 𝛿62 0.010495 0.005429 0.003184 0.002013 0.001350 

𝛿27 = 𝛿72 0.007629 0.002913 0.001708 0.001080 0.000724 

𝛿33 0.017026 0.009157 0.005369 0.003393 0.002276 

 

Table 2.7: The numerical values of displacements 𝜹𝒊𝒋 at various aspect ratios, cont’d 

𝜹𝒊𝒋 𝜷 = 𝟏. 𝟎 𝜷 = 𝟏. 𝟐𝟓 𝜷 = 𝟏. 𝟓𝟎 𝜷 = 𝟏. 𝟕𝟓 𝜷 = 𝟐. 𝟎 

𝛿34 = 𝛿43 0.017440 0.009379 0.005500 0.003475 0.002325 

𝛿35 = 𝛿53 0.016080 0.008649 0.005071 0.003204 0.002150 

𝛿36 = 𝛿63 0.012810 0.006889 0.004040 0.002553 0.001713 

𝛿37 = 𝛿73 0.006922 0.003723 0.002183 0.001380 0.000925 

𝛿44 0.018475 0.009935 0.005826 0.003681 0.002470 

𝛿45 = 𝛿54 0.017439 0.009380 0.005500 0.003475 0.002331 

𝛿46 = 𝛿64 0.014112 0.007590 0.004450 0.002813 0.001887 

𝛿47 = 𝛿74 0.007702 0.004143 0.002429 0.001535 0.001030 

𝛿55 0.017025 0.009157 0.005369 0.003393 0.002276 

𝛿56 = 𝛿65 0.014148 0.007609 0.004461 0.002820 0.001891 

𝛿57 = 𝛿75 0.007848 0.004222 0.002475 0.001565 0.001049 

𝛿66 0.012312 0.006621 0.003883 0.002455 0.001646 

𝛿67 = 𝛿76 0.007079 0.003808 0.002232 0.001411 0.000946 

𝛿77 0.004432 0.002384 0.001397 0.000884 0.000593 

 

2.3.6 Evaluation of Vibration Frequencies 

Equation (2.35) can be represented in matrix form as shown in Eqn. (2.36). 
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[
 
 
 
 
 
 
 
(𝛿11𝑚1 − 𝑅) 𝛿12𝑚2 𝛿13𝑚3 𝛿14𝑚4 𝛿15𝑚5 𝛿16𝑚6 𝛿17𝑚7

𝛿21𝑚1 ( 𝛿22𝑚2 − 𝑅) 𝛿23𝑚3 𝛿24𝑚4 𝛿25𝑚5 𝛿26𝑚6 𝛿27𝑚7

𝛿31𝑚1 𝛿32𝑚2 ( 𝛿33𝑚3 − 𝑅) 𝛿34𝑚4 𝛿35𝑚5 𝛿36𝑚6 𝛿37𝑚7

𝛿41𝑚1 𝛿42𝑚2 𝛿43𝑚3 (𝛿44𝑚4 − 𝑅) 𝛿45𝑚5 𝛿46𝑚6 𝛿47𝑚7

𝛿51𝑚1 𝛿52𝑚2 𝛿53𝑚3 𝛿54𝑚4 (𝛿55𝑚5 − 𝑅) 𝛿56𝑚6 𝛿57𝑚7

𝛿61𝑚1 𝛿62𝑚2 𝛿63𝑚3 𝛿64𝑚4 𝛿65𝑚5 (𝛿66𝑚6 − 𝑅) 𝛿67𝑚7

𝛿71𝑚1 𝛿72𝑚2 𝛿73𝑚3 𝛿74𝑚4 𝛿75𝑚5 𝛿76𝑚6 (𝛿77𝑚7 − 𝑅)]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
0
0
0
0
0
0
0]
 
 
 
 
 
 

 (2.36) 

 

Where R = 
1

𝜔2  (2.37) 

 

Equation (2.36) is a homogeneous equation, and for non-zero values of the amplitudes 𝑦𝑖 , the nontrivial solution 

is obtained by setting the determinant of the coefficient matrix of the amplitudes, 𝑦𝑖 equal to zero, as expressed in Eqn. 

(2.38).  

 

|

|

(𝛿11𝑚1 − 𝑅) 𝛿12𝑚2 𝛿13𝑚3 𝛿14𝑚4 𝛿15𝑚5 𝛿16𝑚6 𝛿17𝑚7

𝛿21𝑚1 ( 𝛿22𝑚2 − 𝑅) 𝛿23𝑚3 𝛿24𝑚4 𝛿25𝑚5 𝛿26𝑚6 𝛿27𝑚7

𝛿31𝑚1 𝛿32𝑚2 ( 𝛿33𝑚3 − 𝑅) 𝛿34𝑚4 𝛿35𝑚5 𝛿36𝑚6 𝛿37𝑚7

𝛿41𝑚1 𝛿42𝑚2 𝛿43𝑚3 (𝛿44𝑚4 − 𝑅) 𝛿45𝑚5 𝛿46𝑚6 𝛿47𝑚7

𝛿51𝑚1 𝛿52𝑚2 𝛿53𝑚3 𝛿54𝑚4 (𝛿55𝑚5 − 𝑅) 𝛿56𝑚6 𝛿57𝑚7

𝛿61𝑚1 𝛿62𝑚2 𝛿63𝑚3 𝛿64𝑚4 𝛿65𝑚5 (𝛿66𝑚6 − 𝑅) 𝛿67𝑚7

𝛿71𝑚1 𝛿72𝑚2 𝛿73𝑚3 𝛿74𝑚4 𝛿75𝑚5 𝛿76𝑚6 (𝛿77𝑚7 − 𝑅)

|

|

= 0 (2.38) 

 

Thus for a given aspect ratio 𝛽𝑖,  and by 

substituting appropriately the numerical values of point 

masses 𝑚𝑖 and the numerical values of the displacements 

𝛿𝑖𝑗 from Tables 2.6 and 2.7 respectively into Eqn. (2.38), 

the eigenvalues obtained by solving Eqn. (2.38) yield the 

vibration frequencies. Thus from Tables 2.6 and 2.7, and 

at aspect ratio, 𝛽 = 1, then Eqn. (2.38) reduces to Eqn. 

(2.39). 

 

|

|

142.90308 − 𝑅 158.13552 95.33793 81.98624 91.56474 119.93738 89.37190
233.24077 284.87119 − 𝑅 177.69455 155.73448 175.93445 232.32610 235.59717
253.02934 319.74534 206.75374 − 𝑅 185.62120 212.67674 283.57288 213.76375
248.25945 319.72349 211.78111 196.63713 − 𝑅 230.65110 312.39504 237.85154
223.12089 290.66169 195.26607 185.61055 225.17547 − 𝑅 313.19197 242.36028
174.61635 229.32600 155.55711 150.19990 187.12379 272.54874 − 𝑅 218.61219
 93.27053 166.70110 84.05670 81.97560 103.79895 156.70667 136.86809 − 𝑅 

|

|

= 0 (2.39) 

 

The solution of the characteristic equation of 

Eqn. (2.39) in terms of R and subsequently in terms of 

𝜔, gives the natural frequencies of vibration of simply 

supported rectangular flexible beam at aspect ratio equal 

to one. Therefore by carrying out similar procedure as 

per described above with respect to each aspect ratio, the 

desired natural frequencies are obtained. Thus, Table 2.8 

presents the numerical values of highly approximated 

natural frequencies of simply supported flexible 

rectangular isotropic beam carrying a uniformly 

distributed mass elements.  

 

Table 2.8: Numerical values of natural frequencies of simply supported flexible isotropic rectangular beam 

carrying a uniformly distributed mass elements 

Natural frequency, (rad/sec) 

Mode Aspect ratio, β 

𝛽 = 1.00 𝛽 = 1.25 𝛽 = 1.50 𝛽 = 1.75 𝛽 = 2.00 

𝜔1 0.1845i 0.9773i 2.7458 3.1916 2.9861 

𝜔2 1.4781 1.4824 1.6680 2.1289 2.5173 

𝜔3 0.6869 0.7169 1.1288 1.4144 1.6650 

𝜔4 0.2751 0.5834 0.7416 0.9327 1.1484 

𝜔5 0.1467 0.3377 0.4284 0.5402 0.6640 

𝜔6 0.1091 0.1421 0.1905 0.2409 0.2948 

𝜔7 0.0272 0.0366 0.0476 0.0597 0.0730 
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Appendix A1: A system of bending moment diagrams due to unit load applied at various mass points for β = 1.0 

 
 

Appendix A2: A system of bending moment diagrams due to unit load applied at various mass points for β = 1.25 
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Appendix A3: A system of bending moment diagrams due to unit load applied at various mass points for β = 1.50 

 
 

Appendix A4: A system of bending moment diagrams due to unit load applied at various mass points for β = 1.75 
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Appendix A5: A system of bending moment diagrams due to unit load applied at various mass points for β = 2.0 

 
 

2.4 DISCUSSION OF RESULTS 
From Tables 2.1 through 2.5, it was observed 

that at the mid-spans of the equivalent lengths, the elastic 

bending moments 𝑀𝑥  and the nonlinear bending 

moments 𝑀𝑒
′  are numerically equal for all the aspect 

ratios. However, it was observed that the nonlinear 

bending moments exhibit linearly integer multiple of the 

elastic bending moments immediately after the end 

supports, which diminish towards the mid-spans of the 

equivalent lengths. For instance, at aspect ratio, β =1.0, 

the nonlinear bending moments are about 1.117 and 

1.045 times the corresponding elastic bending moments 

at distances 2.095m and 4.395m measured from the end 

supports respectively. And at aspect ratio, β = 1.50, the 

nonlinear bending moments at distances 2.139m and 

4.277m measured from the end supports are about 1.011 

and 1.005 times the elastic bending moments 

respectively. Also at aspect ratio, β = 2.00, at distances 

2.142m and 4.284m measured from the end supports, the 

nonlinear bending moments are about 1.002 and 1.001 

times the elastic bending moments respectively. 

Furthermore, it was observed that the difference between 

nonlinear bending moments and elastic bending 

moments exhibits soft-spring type with aspect ratio, β. 

Equally, it was observed that the difference between the 

initial (undeformed) length, L and the corresponding 

equivalent length, Lo also exhibits soft-spring type with 

the aspect ratio, as the numerical values of ∆ determined 

at aspect ratios β = 1.00, β = 1.50 and β = 2.00 are 

0.3375m, 0.02966m and 0.00567m respectively for 

initial length of 15m. The implication of this disposition 

is that deepness of the beam influences the level of 

deformation of the beam. 

 

From Table 2.8, it was observed that the first 

mode circular frequencies at aspect ratios, β = 1.00 and 

β = 1.25 are complex values. This exposition 

significantly shows that the beam at those aspect ratios 

experiences underdamped phenomenon; or in other 

words, the stability of the beam at those aspect ratios is 

not guaranteed for undeformed length of 15m. Also from 

Table 2.8, the fundamental frequency for each aspect 

ratios is located at the seventh mode; and the 

fundamental frequency exhibits hard-spring type with 

the aspect ratio. Also from Table 2.8, it was apparently 

observed that the natural frequencies decrease from 

mode number one to mode number seven; and the 

implication of this can be interpreted that the rigidity of 

the support influences the numerical value of the circular 

frequency, since mode number seven is close to the 

movable edge support. 

 

CONCLUSIONS 
This paper analyses vibration of uniform 

flexible simply supported rectangular isotropic beam 

under large deformation with uniformly distributed mass 
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elements using the equivalent pseudolinear system. In 

the analysis, it was found that the computed elastic 

bending moments and the large deformation (nonlinear) 

bending moments are numerically equal at the mid-spans 

of the equivalent lengths for all the aspect ratios. Also it 

was found that the difference between nonlinear bending 

moments and elastic bending moments exhibits soft-

spring type with aspect ratio, β. Furthermore, it was 

found that the first mode circular frequencies at aspect 

ratios β = 1.00 and β = 1.25 are complex eigenvalues. 

Also, it was found that the natural frequencies exhibit 

hard-spring type with the aspect ratios, except at the first 

mode of aspect ratio β = 1.75. Furthermore, it was found 

that the fundamental frequency of each of the aspect 

ratios is located at the seventh mode. Therefore from 

these results obtained the following conclusions can be 

deduced: 

(i) Maximum large deformation bending moment 

for a simply supported flexible rectangular 

isotropic beam loaded with uniformly 

distributed loads can be determined by using 

elastic model whenever the appropriate linearly 

horizontal displacement of the movable edge 

support is included in the expression of the 

bending moment. 

(ii) Deepness of the flexible simply supported 

rectangular beam influences the magnitude of 

deformation under uniformly distributed loads. 

(iii) The dynamic stability of flexible simply 

supported rectangular beam is not guaranteed 

when the depth-to-breadth ratio is less than or 

equal to 1.25. 

(iv) The vibration characteristics of simply 

supported rectangular flexible beam loaded 

with uniformly distributed mass elements are 

influenced by the rigidity of the support 

conditions.  
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