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Abstract  
 

This research addresses the significant challenge of unreliable wireless communication, which hinders the performance of 

ZigBee-based wireless sensor networks (WSNs) in precision agriculture. A dual-slope log-distance path loss model was 

developed to accurately predict signal propagation complexities in dense vegetative environments for improved wireless 
communication. The study was conducted on a cassava farm in Ondo State, Nigeria, characterized by vegetation heights 

of 1.8 meters, making it an ideal site for investigation. A systematic methodology was employed, incorporating radio 

frequency measurements in both line-of-sight and non-line-of-sight conditions. This involved deploying two XBee S2C 

modules operating at 2.4 GHz, with one designated as a coordinator and the other as a router. The collection of Received 
Signal Strength Indicator (RSSI) and throughput data occurred at 5 meter intervals, with variations in the router's 

orientation. Results revealed a maximum communication range of 70 meters under non-line-of-sight conditions, compared 

to 140 meters in line-of-sight scenarios, where the path loss exponent was determined to be 1.78. The path loss exponents 

for the cassava fields were found to be 2.55 and 4.25. The developed dual-slope path loss model showed a strong fit to 
additional empirical data from a separate cassava farm location, achieving a Mean Absolute Percentage Error (MAPE) of 

3.30 % and an R-squared value of 0.94. Hence, this model offers a comprehensive framework for characterizing radio wave 

propagation in agricultural environments, enhancing data transmission reliability and energy efficiency in smart farming 

applications. 
Keywords: Path loss, ZigBee, Wireless Sensor Networks, Cassava farms, Dual-slope model, Non-line-of-sight, Signal 

propagation, IoT. 
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1. INTRODUCTION 
In recent years, wireless sensor networks 

(WSNs) have witnessed significant advancement due to 

their vast applications in fields such as the Internet of 

Things (IoT), precision agriculture, health management, 
environmental monitoring, and industrial automation [1, 

2]. Basically, WSNs are distributed, self-organized 

networks consisting of small, low-power sensor nodes 

that can monitor their surrounding environment to gather 
data, process the collected data, and wirelessly transmit 

the data to a central base station [3]. Long Range Radio 

(LoRa), ZigBee and SigFox wireless protocols are the 

common wireless access technologies used in WSNs. 
However, for short-range communication networks that 

prioritize coverage and scalability, ZigBee wireless 

technology, which adheres to the IEEE 802.15.4 
standard, outperforms other technologies due to its low 

power consumption, low cost, and robust mesh 

networking capabilities [4]. According to Ahmed et al., 

[5], the application of WSNs in precision agriculture is 
of paramount importance to every nation for food 

security and economic growth. The technology driving 

precision agriculture is WSNs, which allow the farmers 

to monitor the farm environments remotely and provide 
an effective way of collecting, processing, and 

transmitting data to designated base station. The data 

received at the base station are sometimes further 

analysed to assist the farmers in making decisions that 
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would improve their yield with higher productivity [6, 
7]. 

 

WSNs facilitate smart farming by monitoring 

environmental parameters like temperature, humidity, 
soil moisture, and rainfall, and enabling smart irrigation 

when necessary. In addition, WSNs enable intruder 

detection, and fertilizer application [8], which indeed aid 

farm management. Furthermore, smart farming which 
WSNs enables helps farmers and soil to work better by 

doing the right thing at the right time on farm. In 

addition, remote decision such pest and fertilizer 

management that smart farming using WSNs enables 
also assist farmers in reducing waste and other negative 

environmental consequences. Despite these advantages 

that WSNs offers to smart farming, performances of 

WSNs largely depend on network coverage, 
communication reliability and energy efficiency. 

However, signal attenuation occur between transmitter 

and receiver in farm environments due to absorption, 

reflection, and scattering, resulting in unreliable 
communication links [9, 10]. This signal attenuation or 

reduction is usually due to path loss, which is the 

weakening of signal strength as the radio wave travels 

from the transmitter to the receiver as a result of 
challenges pose on the signal by vegetative settings [11]. 

The common path loss models such as free space and 

two-ray have proven unsuitable for WSNs in agricultural 

applications [12] and even vegetative models, such as the 
Modified Exponential Decay (MED), ITU-R, and 

COST-235, often produce significant errors in farm 

settings [6]. In view of these limitations, poor 

management of the limited energy resources of the 
sensor nodes will degrade the network lifetime as well as 

the system performance. This eventually leads to huge 

financial losses for farmers through wrong predictions 

from an unreliable monitoring system [13]. Hence, there 
is a need to integrate an ideal model of radio wave 

propagation into the planning and design of the WSNs 

[14, 15]. This is because WSNs designed by using 

unrealistic path loss models will not perform well when 
deployed in farm environments, as the radio wave 

propagation is wrongly characterized. 

 

Therefore, in this research work, cassava farm 
was employed as a case study for the characterization of 

path loss in WSNs. Cassava (Manihot esculenta), a food 

and cash crop in Nigeria, contributes greatly to the gross 

domestic product (GDP) and forms the backbone of 
much of the country's agricultural economy [16, 17]. 

Despite its great economic potential, cassava farming 

faces challenges in capturing real-time environmental 

data, such as soil moisture, temperature, and pest 

infestation, which are needed to improve the crop yields 
[18, 19]. Consequently, farmers recently are using WSNs 

to increase farm produce's productivity and sustainability 

[20, 21]. However, the effective deployment of WSNs on 

cassava farms is complicated by environmental factors 
that affect signal transmission. In particular, the path loss 

characteristics of cassava fields are affected by dense 

foliage and variable terrain, resulting in unpredictable 

signal attenuation that compromises data transmission 
reliability. Therefore, it is very important to develop a 

robust path loss model specifically designed for ZigBee-

based WSNs in cassava farms to improve network 

reliability and data flow efficiency in such complex 
agricultural environments. Thus, the aim of the study 

presented in this paper is to develop a suitable path loss 

model for ZigBee-based wireless sensor networks in a 

cassava farm environment. The outcomes of this study 
will facilitate the establishment of energy-efficient 

WSNs designed to benefit Nigeria’s agricultural sector, 

ultimately improving the efficiency and sustainability of 

cassava cultivation. The rest of the paper is organized as 
follows: Section 2 contains the literature review while 

Section 3 describes the materials and method employed. 

Section 4 discusses the results obtained while the paper 

is concluded in Section 5 with summary of the study’s 
findings and recommendations. 

 

2. LITERATURE REVIEW 
Path loss modelling in agricultural 

environments has been a focal area of research due to the 

unique signal propagation challenges posed by dense 

vegetation, varied crop types, and prevalent non-line-of-
sight (NLOS) conditions. Conventional models, such as 

free-space path loss, often fall short in these settings, 

where foliage density, crop height, and other 

environmental factors alter signal attenuation 
significantly [22]. As depicted in Figure 1, phenomena 

like diffraction, scattering, and ground reflection interact 

intricately with radio waves in agricultural 

environments, influencing signal behaviour and 
propagation. These interactions result in distinctive path 

loss characteristics across different agricultural settings, 

necessitating specialized approaches for accurate signal 

prediction and effective Wireless Sensor Network 
(WSN) deployment [23]. Additionally, these path loss 

dynamics directly influence the energy consumption of 

sensor nodes, as devices require higher transmission 

power to maintain connectivity in challenging 
propagation environments, thereby reducing their 

operational lifespan and impacting network 

sustainability [24]. 
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Figure 1: Radio wave propagation in agricultural environments 

 
In response to these challenges, various studies 

have introduced innovative techniques to refine path loss 

models for agricultural applications, recognizing that 

energy efficiency is closely tied to accurate path loss 
prediction. For example, Barrios-Ulloa et al., [6] utilized 

machine learning to model path loss in cassava fields, 

providing an alternative where traditional models 

struggle to account for dense vegetation effects. This 
adaptation not only improves coverage but also reduces 

the energy expenditure of ZigBee nodes by optimizing 

transmission power based on localized path loss 

conditions. Similarly, Jawad et al., [9] employed Particle 
Swarm Optimization (PSO) to enhance the precision of 

an empirical path-loss model, addressing the need for 

adaptive modelling in smart agriculture where crop 

layouts and dense foliage significantly affect signal 
transmission. These studies underscore the inadequacies 

of generalized models in capturing the nuances of 

agricultural environments, especially where complex 

NLOS conditions prevail, impacting the energy budgets 
required for continuous data collection and transmission. 

 

Crop-specific studies further reveal the 

influence of vegetation type on path loss, underscoring 
the importance of tailored models. In rice field sensor 

networks, Gao et al., [25] reported significant path loss 

attributed to crop height and density, indicating that each 

crop type requires consideration of its unique attenuation 
characteristics. This crop-specific modelling not only 

enhances accuracy but also optimizes the energy 

consumption of nodes, as fewer retransmissions are 

required when models accurately predict signal strength. 
Pal et al., [26] found similar effects in millet and rice 

fields, observing that different vegetation types can 

substantially affect received signal strength. Together, 

these findings highlight the necessity for models that 
account for specific agricultural factors to accurately 

predict path loss in diverse farming landscapes, thereby 

reducing the energy costs associated with signal loss and 

retransmissions in dense agricultural environments. 

 

Vegetation density and type particularly impact 
ZigBee WSNs in agriculture, where foliage absorption 

and scattering play a crucial role in signal attenuation. 

Hakim et al., [27] studied path loss in dense forests and 

found that foliage density significantly increased signal 
attenuation, emphasizing the critical need for 

environment-specific models in agricultural contexts to 

minimize energy consumption. Yoshimura et al., [28] 

explored the effects of vegetation at both 920 MHz and 
2.4 GHz and found that higher frequencies suffered 

greater attenuation due to foliage, necessitating higher 

transmission power and consequently more energy usage 

to maintain stable connections. These findings confirm 
the substantial role of vegetation density and type on 

ZigBee signal reliability, particularly for regions with 

high foliage density, such as those studied by Castellanos 

and Teuta [23] in the Amazon, where vegetation ratios 
directly correlated with path loss levels. This increased 

attenuation necessitates adaptive transmission strategies 

to ensure that sensor nodes can sustain their energy over 

time, supporting longer network operation and reducing 
the need for frequent maintenance. 

 

The limitations of single-slope path loss models 

in agricultural contexts have led researchers to 
investigate dual-slope models to address the varying 

conditions caused by vegetation density and type. For 

instance, Oyie and Afullo [29] conducted a comparative 

study showing that dual-slope models significantly 
improve accuracy over single-slope models in dense 

vegetation. This approach, particularly relevant for low-

power, near-ground sensor networks, is supported by 

studies like Olasupo et al., [30], who demonstrated that 
terrain-specific calibration enhances model accuracy by 

capturing the effects of ground clutter and crop canopy 
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variations, thereby minimizing unnecessary energy 
expenditure. Srisooksai et al., [31] and [32] further 

validated dual-slope models in fruit orchards and tall 

grass fields, emphasizing that these models can adapt to 

dynamic agricultural landscapes. By adjusting 
transmission power requirements in both line-of-sight 

(LOS) and NLOS conditions, dual-slope models help 

conserve energy, ensuring efficient WSN performance in 

energy-constrained environments. 
 

Collectively, these studies demonstrate the 

necessity of vegetation-aware, dual-slope, and empirical 

path loss models for reliable agricultural WSN 
performance. Dual-slope models, in particular, provide 

flexibility by adjusting for rapid signal attenuation in 

both LOS and NLOS conditions, as illustrated by 

Barrios-Ulloa et al., [6], who advocate for machine-
learning-enhanced dual-slope models in agricultural 

settings like cassava fields. This adaptability positions 

dual-slope models as particularly suitable for large-scale 

WSN deployment, with Miao et al., [33] showing that 
integrating received signal strength (RSS) data in dual-

slope models can improve sensor location estimation, 

thereby enhancing coverage and network efficiency in 

expansive farmlands. Consequently, this contributes to 
improved energy efficiency by reducing retransmissions, 

conserving battery life, and supporting sustainable WSN 

deployments in challenging agricultural landscapes. 

 

3. MATERIALS AND METHODS 
3.1 Study Area Description 

This study was conducted on a cassava farm 
selected to analyse path loss in both line-of-sight (LOS) 

and non-line-of-sight (NLOS) conditions, allowing for 

in-depth examination of wireless signal propagation 

through dense vegetation. The farm is located at Lat. 
7°10′47″ N, Long. 4°43′41″ E in Oke Igbo Local 

Government Area of Ondo State, Nigeria, and covers a 

flat area of 60 meters by 100 meters. The cassava plants, 

characterized by broad leaves, dense foliage, and robust 
woody stems, attain an average height of 1.80 meters, 

with a ridge spacing of 0.41 meters and inter-plant 

spacing of 0.78 meters. These characteristics produce 

substantial scattering effects on signals, making this 
environment ideal for evaluating the performance of 

ZigBee-based wireless sensor networks in vegetated 

agricultural settings. 

 
3.2 Equipment Setup and Radio Frequency 

Measurements 

The radio frequency (RF) measurements in this 

study, which included range and throughput tests, were 
conducted in both a cassava farm (NLOS) and an open 

field (LOS) to thoroughly examine path loss. Two XBee 

S2C ZigBee modules were deployed to develop a path 
loss model by measuring the Received Signal Strength 

Indicator (RSSI) and throughput values. One XBee 

module served as a coordinator node, while the other 

operated as a router node. The coordinator, in a fixed 
position, was powered by a laptop via USB, while the 

router was powered through the 3.3 V pin of an Arduino 

Uno, which was supplied by a 9V battery. Both nodes 

were placed at an antenna height of 1.0 m throughout the 
measurements. In this study, the transmit power of the 

two XBee-S2C modules was set to 8 dBm, with a 

receiver sensitivity of –102 dBm, and both the 

transmitter and receiver antennas had a gain of 2 dBi. 
 

During the field measurement conducted, the 

router was incrementally moved away from the 

coordinator, with RSSI and throughput data collected 
every 5 meters until communication was lost. RSSI and 

throughput data were taken at various angles from the 

coordinator, specifically at 60°, 90°, and 120°, to assess 

directional impact on signal propagation. The 
coordinator was connected to a laptop, allowing RSSI 

and throughput data capture through X-CTU software. 

This experimental setup is similar to that used in Jawad 

et al., [9], which also involved configuring ZigBee 
modules for RSSI-based path loss analysis in a controlled 

environment. The configuration of equipment used for 

RF measurements in the farm field is illustrated in Plate 

1. 
 

In the X-CTU configuration setup for 

evaluating the range and throughput of XBee S2C 

modules, several parameters were carefully chosen to 
ensure accurate performance analysis. As shown in 

Figure 2, the range test is configured with a packet 

payload of 10 bytes and a transmission interval (Tx 

interval) of 500 ms. A total of 100 packets are 
transmitted, yielding local and remote RSSI values at -

45 dBm. The success rate indicator confirms that 100% 

of packets were successfully sent and received, ensuring 

reliable data on signal strength and communication 
quality across the specified range between the 

coordinator and router modules.  

 

Similarly, in the throughput test depicted in 
Figure 3, the packet payload size is also set to 10 bytes, 

with the test running for 30 seconds as shown in the 

elapsed time field. Real-time transfer ratios are 

displayed, with an average transfer rate of 2.59 Kbps and 
an instantaneous transfer rate of 2.69 Kbps. This 

configuration facilitates consistent measurement of both 

throughput and signal range, offering valuable insights 

into the performance of XBee S2C modules in the 
cassava farm (NLOS) and open field (LOS) 

environments. 
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Figure 2: X-CTU configuration setup for range test 

 

 
Figure 3: X-CTU configuration setup for throughput test 
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Plate 1: Equipment Setup for RF Measurements 

 

3.3 Path Loss Model Formulation 

In this research work, a two-slope log-distance 

model was employed to characterize the radio wave 

propagation in the cassava farm environment. This 

model was chosen due to its ability to capture the varying 
attenuation effects in environments with mixed LOS and 

NLOS conditions, such as cassava farms with dense 

vegetation. The two-slope path loss model divides the 

environment into two distinct regions based on the 
breakpoint distance (BPD); the region closer to the 

transmitter where LOS conditions dominate and the 

region farther away where NLOS effects become 
significant. The two-slope path loss equation was derived 

using the experimental RSSI measurements collected at 

varying distances from the transmitter. The RSSI values 

were processed using the least squares regression line 
analysis, a statistical method that minimizes the error 

between the measured data points and the model 

predictions. This approach ensured that the model 

parameters accurately reflected the propagation 
characteristics of the cassava farm.  

 

The two-slope path loss model [34] is expressed in (1): 

𝑃𝐿 (𝑑𝑖) =  {
𝑃𝐿 (𝑑𝑏) + 10𝑛1 log (

𝑑𝑖

𝑑𝑏
) 𝑑𝑖  ≤  𝑑𝑏

𝑃𝐿 (𝑑𝑏+1) + 10𝑛2 log (
𝑑𝑖

𝑑𝑏+1
) 𝑑𝑖  >  𝑑𝑏

 ………… (1) 

 

Where is the path loss at 1 meter,  and 

are the path loss exponents. The distance  is known 

as the breakpoint distance. The breakpoint distance is the 

distance at which the path loss curves for NLOS and LOS 
intersects.  

 

The relationship between path loss, transmit and received 

power is given as: 
𝑃𝐿[𝑑𝐵] =  𝑃𝑡 [𝑑𝐵𝑚] − 𝑃𝑟[𝑑𝐵𝑚] + 𝐺𝑡[𝑑𝐵] + 𝐺𝑟[𝑑𝐵] …(2) 

 

Where 𝑃𝑡 is the transmit power, 𝑃𝑟 is the received power, 

𝐺𝑡  and 𝐺𝑟  are the gain of the transmitter and receiver 

antennas respectively.  

 

3.4 Validation of Empirical Path Loss Model  

The empirical path loss model developed in this 
work was validated by conducting a range test in another 

cassava farm located in Okitipupa Local Government 

Area of Ondo State, Nigeria. The equipment setup is the 

same as the first RF measurement campaign. The 
measured path loss and predicted path loss was plotted 

against the communication range and statistical analysis 

was performed to determine if the empirical path loss 

model fits the measured path loss. In order to validate the 

developed path loss model, the statistical measures 
considered include Mean Absolute Error (MAE), Mean 

Square Error (MSE), Root Mean Square Error (RMSE), 

and Mean Absolute Percentage Error (MAPE). 

 

4. RESULTS AND DISCUSSION 
In this section, RF measurement results for 

XBee-S2C RF modules in a cassava farm and open field 
environment at Oke Igbo Local Government Area of 

Ondo State, Nigeria are presented and discussed in 

details. 

 
4.1 RESULTS 

The RSSI measurement data obtained from the 

open field, representing LOS conditions, and the cassava 

farm, representing NLOS conditions, were utilized to 
characterize the path loss of the XBee-S2C module using 

Equation (2). The measurement data is presented in 

Table 1, and the analysis was conducted using Microsoft 

Excel to ensure precision and reliability in processing the 
data. 

 

)( bdPL
1n 2n

bd
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The variation of average RSSI measurements of 
the X-Bee Module with the distances between the 

transmitter node and receiver node both in the open field 

and cassava farm environment is presented in Figure 4. 

Similarly, the estimated path loss values for the open 
field in variation with the logarithm of the distance 

between the transmitter node and the receiver node is 
shown in Figure 5. Likewise, Figure 6 shows the 

estimated path loss values for the cassava farm in 

variation with the logarithm of the distance between the 

transmitter node and the receiver node. 

 

 
Figure 4: The RSSI Range Test Results of X-Bee Module 

 

Table 1: RSSI and throughput measurement data for LOS and NLOS scenarios 

Distance 

(m) 

Average 

RSSI NLOS 

(dBm) 

Average 

RSSI LOS 

(dBm) 

Average Path 

Loss NLOS 

(dB) 

Average Path 

Loss LOS 

(dB) 

Throughput 

NLOS (kbps) 

Throughput 

LOS (kbps) 

1 -31.44 -31.00 43.44 43.00 2.62 2.66 

5 -50.11 -46.00 62.11 58.00 2.61 2.59 

10 -53.00 -52.00 65.00 64.00 2.58 2.65 

15 -64.89 -53.67 76.89 65.67 2.58 2.6 

20 -63.78 -65.67 75.78 77.67 2.59 2.66 

25 -72.22 -58.00 84.22 70.00 2.6 2.65 

30 -73.78 -56.33 85.78 68.33 2.57 2.64 

32 -77.78 -56.67 89.78 68.67 2.57 2.62 

35 -73.89 -59.67 85.89 71.67 2.6 2.64 

40 -76.56 -59.67 88.56 71.67 2.58 2.64 

45 -76.00 -61.33 88 73.33 2.6 2.64 

50 -82.00 -58.67 94 70.67 2.65 2.63 

55 -85.11 -58.67 97.11 70.67 2.19 2.59 

60 -81.78 -62.00 93.78 74.00 2.64 2.61 

65 -87.33 -61.33 99.33 73.33 1.56 2.61 

70 -90.67 -64.00 102.67 76.00 2.59 2.62 

75 -89.67 -67.33 101.67 79.33 2.19 2.61 

80 -91.33 -69.00 103.33 81.00 1.31 2.62 

85 -92.33 -63.00 104.33 75.00 0.83 2.65 

90 -94.11 -65.00 106.11 77.00 0.16 2.62 

95 -94.11 -66.67 106.11 78.67 0.92 2.6 

100   -70.00   82.00   2.64 

105   -69.33   81.33   2.58 

110   -73.00   85.00   2.57 

115   -69.00   81.00   2.57 

120   -71.00   83.00   2.57 

125   -71.00   83.00   2.56 

130   -72.00   84.00   2.59 

135   -70.67   82.67   2.56 

140   -71.33   83.33   2.58 
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Figure 5: The Path Loss Curve of X-Bee Module in the Open Field 

 

 
Figure 6: The Path Loss Curves X-Bee Module in the Farm Environment 

 

The developed empirical path loss model equation is expressed in (3) 

𝑃𝐿 (𝑑) =  {
43.33 + 25.52 log(𝑑)  𝑑 ≤  𝑑𝑏

22.10 + 42.45 log(𝑑)  𝑑 >  𝑑𝑏

 ……………… (3) 

 

The results of the throughput test performed in the open field and cassava farm plantation are presented in Figure 

7. 

 

 
Figure 7: The Throughput Curves of X-Bee Module for LOS and NLOS scenarios 
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The result of the range test conducted in the cassava farm located at Okitipupa Local Government Area of Ondo 
State is presented in Figure 8;  

 

 
Figure 8: The validation of empirical path loss 

 

The statistical measures of the developed empirical path loss model are presented in Table 2. 

 
Table 2: The statistical measures of the empirical path loss model 

MAE MSE RMSE MAPE R-squared 

1.70882353 11.237 3.35 dB 3.30% 0.94 

 

4.2 DISCUSSION 

As shown in Figure 4, the Received Signal 

Strength Indicator (RSSI) values consistently decrease as 
the distance between the two nodes increases in both 

measurement environments. In the open field, the RSSI 

values ranged from –31 dBm to –71 dBm, whereas in the 

cassava plantation, the values varied from –31 dBm to –
94 dBm. Notably, the two curves intersect at a specific 

distance, referred to as the crossover or breakpoint 

distance, which is approximately 20 m. Before this 

crossover distance, the RSSI values for the XBee module 
in both environments decreased at a similar rate; 

however, post-crossover, the farm field exhibited a more 

pronounced decline in RSSI values. This decrease 

underscores the negative impact of foliage along the 
radio wave propagation path. This phenomenon aligns 

with the findings of Olasupo et al., [30], who observed a 

similar increase in path loss in environments with natural 

grass, and Aldosary and Kostanic [22], who reported 
increased attenuation in tree-obstructed environments. 

These studies emphasize the critical role of vegetation in 

influencing the propagation characteristics of radio 

waves. 
 

In Figure 5, a consistent linear relationship 

between the two variables is observed, with the path loss 

exponent for the open field (line-of-sight scenario) 
calculated at 1.78. While this value closely approximates 

the free space path loss exponent of 2.00, which indicates 

that the free space path loss model tends to overestimate 

the path loss variations experienced by the XBee module 
in the open field. The estimated path loss for the cassava 

farm field, depicted in Figure 6, reveals path loss 

exponents of 2.55 and 4.25 for distances prior to and 

subsequent to the breakpoint distance, respectively. This 
increase in path loss exponent is consistent with the 

findings of Barrios-Ulloa et al., [6], who observed that 

agricultural environments with dense vegetation, such as 

cassava fields, significantly affect radio wave 
propagation. Lopez-Iturri et al., [35] also reported 

similar increases in path loss exponents in dense forest 

environments, where foliage severely attenuates the 

radio signal, further corroborating the results observed in 
this study. 

 

Figure 7 shows that the average data transfer 

ratio for the radio module in the open field is 2.61 kbps, 
compared to 2.17 kbps in the cassava plantation. The 

open field exhibited a steady data transfer ratio, whereas 

in the cassava farm, a uniform transfer ratio was 

maintained up to a communication distance of 50 m, 
beyond which fluctuations were observed. This 

variability is attributed to reflections and fading effects 

prevalent in the foliage-rich environment, as noted by 

Aldosary and Kostanic [22]. 
 

The results from the range test depicted in 

Figure 5 indicate that the XBee module has a coverage 

radius exceeding 140 m in the open field and 
approximately 75 m in the cassava farm. However, the 

throughput test results illustrated in Figure 7 reveal that 

reliable data communication cannot be assured beyond a 

communication range of 70 m. Consequently, the 
maximum communication range for the XBee module is 

determined to be 70 m. Beyond this range, the data 

transfer rate becomes unreliable, which is consistent with 

the findings of Alsayyari and Aldosary [24], who 
reported similar limitations on the effective 

communication range of wireless sensor networks in 

environments with substantial obstructions. 
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Graphically represented in Figure 8, the path 
loss model demonstrates a close fit to the measured path 

loss data. Additionally, Table 2 indicates that the 

developed model for this study achieves a Mean 

Absolute Percentage Error (MAPE) of 3.30%, which is 
less than 10%, signifying an excellent fit. Another key 

statistical measure, the R-squared value, approaches 

unity, while the acceptable Root Mean Square Error 

(RMSE) for path loss models is established at less than 6 
dB. These results are consistent with the findings of 

Barrios-Ulloa et al., [6], who achieved similar levels of 

accuracy using machine learning techniques for path loss 

prediction in agricultural environments. The validation 
of the developed path loss model confirms its efficacy in 

accurately predicting radio wave propagation behaviour 

within a cassava farm environment. 

 

5. CONCLUSION 
This study has developed an empirical path loss 

model in ZigBee-based WSNs in cassava farm 
environments, effectively addressing the critical 

challenges posed by vegetation density on wireless 

signal propagation. Empirical range and throughput tests 

with XBee-S2C modules were conducted under NLOS 
conditions representing cassava farm and LOS scenarios 

in open field, leading to the development of a two-slope 

log-distance path loss model. The maximum 

communication range was observed to be 70 meters in 
the cassava farm, while it extended to 140 meters in the 

open field. The path loss exponents were determined to 

be 2.55 and 4.25 for distances before and after the 

breakpoint in the cassava farm, respectively, contrasting 
with a path loss exponent of 1.78 in the open-field 

scenario. These findings underscore the significant 

impact of dense vegetation on signal attenuation, which 

is crucial for the design and simulation of WSNs in 
precision agriculture.  

 

The path loss model developed in this study 

offers a robust framework for characterizing radio wave 
propagation in densely vegetated agricultural 

environments and lays the groundwork for accurate 

prediction of energy consumption in ZigBee-based 

WSNs. This predictive capability is essential for 
optimizing the energy efficiency of network nodes, thus 

supporting prolonged operation in remote or power-

constrained farming setups. The results of this study 

shows that the developed path loss model for this study 
establishes valuable insights for farmers by accurately 

estimating communication ranges for their unique crop 

settings, which can improve WSN deployment strategies 

for monitoring soil conditions, crop health, and 
environmental factors. Ultimately, this contributes to 

more efficient farming practices and better crop yields 

through the strategic use of wireless communication 

technology in smart agriculture. 
 

Future research should encompass extensive 

field testing across diverse agricultural landscapes and 

seasonal variations to further enhance the developed 

model's robustness. Additionally, adjusting antenna 
heights and orientations may improve link reliability in 

areas with dense vegetation. 
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