

Citation: Viswanatha V, Ramachandra A C, Berwyn Suhas, Adithya T (2023). Solution for XOR Problem with Neural

Networks Using Google Colab and MATLAB / Simulink. Saudi J Eng Technol, 8(1): 16-28.

 16

Saudi Journal of Engineering and Technology
Abbreviated Key Title: Saudi J Eng Technol

ISSN 2415-6272 (Print) |ISSN 2415-6264 (Online)

Scholars Middle East Publishers, Dubai, United Arab Emirates

Journal homepage: https://saudijournals.com

 Original Research Article

Solution for XOR Problem with Neural Networks Using Google Colab

and MATLAB / Simulink
Viswanatha V

1*
, Ramachandra A C

2
, Berwyn Suhas

3
, Adithya T

3

1Assistant Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology,

Bangalore, India
2Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India
3UG Student, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India

DOI: 10.36348/sjet.2023.v08i01.003 | Received: 08.12.2022 | Accepted: 22.01.2023 | Published: 26.01.2023

*Corresponding author: Viswanatha V

Assistant Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore,

India

Abstract

To find solution for XOR problem we are considering two widely used software that is being relied on by many software

developers for their work. The first software is Google Colab tool which can be used to implement ANN programs by

coding the neural network using python. This tool is reliable since it supports python language for its implementation.

The other major reason is that we can use GPU and TPU processors for the computation process of the neural network.

The major advantage of this is that for complex Neural Networks instead of using CPU present in the user‘s system we

can use those two processors through online mode without purchasing such processors for our computation. The next

software that can be used for implementing ANN is Matlab Simulink. This software is used for highly calculative and

computational tasks such as Control System, Deep Learning, Machine Learning, Digital Signal Processing and many

more. Matlab is highly efficient and easy to code and use when compared to any other software. This is because Matlab

stores data in the form of matrices and computes them in this fashion. Matlab in collaboration with Simulink can be used

to manually model the Neural Network without the need of any code or knowledge of any coding language. Since

Simulink is integrated with Matlab we can also code the Neural Network in Matlab and obtain its mathematically

equivalent model in Simulink. Also, Matlab has a dedicated tool in its library to implement neural network called NN

tool. Using this tool, we can directly add the data for input, desired output, or target. After inserting the required data, we

can train the network with the given dataset and receive appropriate graph‘s which will be helpful in analyzing the data.

Once the Neural Network is trained, we can test the network through this tool and verify the obtained results.

Keywords: XOR problem, Back propagation, Feature extraction, Deep learning.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
Artificial Neural Network is a part of Deep

Learning which is widely used in this generation as it is

the next arising technology with immense scope in the

present IT sector. The main reason for developing ANN

is to try to simulate the working of a human brain [1].

The Human brain is a complex organ consisting of

various networks interconnected to each other through

neurons. A neuron is the basic building block of a

network on which the neural network works upon. If

this vast network of complexity can be utilized by a

machine it can perform wonders beyond human

imagination [2]. Hence research regarding Neural

Network has been initiated. From the diagram shown in

fig.1, we can compare a neuron with the block diagram

representation of the ANN. The Dendrites acts as the

input for the neuron, And the main nucleus is

represented as a summer present in the ANN network.

The Axons are represented as nodes connecting the next

neuron with weights associated with it [3-5].

https://saudijournals.com/sjeat

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 17

Fig. 1: Neuron with the block diagram representation

In this sector we are going to discuss about

implementing XOR gate shown in fig. 2 in the form of a

Neural Network. Unlike the other basic gates such as

AND, OR and NOT Gates, XOR gate cannot be

realised as a neural network easily. This is because of

non-linearity condition which is observed in XOR gate

when compared to other basic gates [6-8]. All the

outputs such as logic 0‘s and logic 1‘s of other gates

can be separated with a straight line plotted on the

graph, but that is not the case for XOR Gate. Hence this

gate cannot be realized with a basic neural network

containing an input and an output layer. Hence to solve

this problem we are using two hidden layer which lies

between the input and output neuron. And also, we have

to use back propagation algorithm to update the weights

and produce the desired output [9-11].

Fig. 2: XOR gate with functional logic

When we consider basic gates such as AND,

OR and NOT gates we can realize these gates and

implement them into neural network easily using single

layer perception consisting of only input layers and

output layers as shown in fig.3 of OR gate. But the

same methodology cannot be used to implement an

XOR gate as the output of the XOR gate is not linear.

Hence the outputs cannot be separated using a straight

line as shown in the fig.3 of XOR gate.. To solve this

issue we use multilayer perception which consists of

input layers, hidden layers and output layers. The

hidden layers are used to provide a non-linear property

to the neural network. Hence by using two hidden

layers we can implement XOR gate in a neural network

[12-15].

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 18

Fig. 3: Data space in plane for OR and XOR gates

2. METHODOLOGY
The neural network architecture of a XOR gate

is as shown in fig.4. This network is called forward

propagation network as the signal flow traverse from

input to output in a linear path. In this network we have

two input layers which give out the two inputs of a

XOR gate. There are two hidden layers present and they

are being provided with a biasing input [B1 & B2] at

their respective nodes. These two hidden layers are

connected to the output layer in which the output layer

is also being provided with a biasing input [B3].

Between the input and hidden layers there are weights

attached to each node [W1,W2,W3 &W4] and also

between hidden layer and output weights[W5 & W6]

are present. As the signal passes through these nodes,

they are multiplied by their respective nodes before

entering the neuron for further computation. This is a

Feed Forward network as there are no feedback loops

present to pass the output value back to the input [16,

17].

Fig. 4: Neural network architecture of non-linear system as XOR gate

The architecture shown in fig. 5 displays us the

application of the back propagation algorithm to Feed

Forward XOR Neural Network. Here if the Neural

network fails to give out the desired output. Hence, we

implement back propagation algorithm to tune the

weights. The error signal generated is taken as input and

it is used for computation of change in weight. The

change in weight must be calculated for each node

present in the neural network. Once this change of

weight is calculated they must be added to their

respective weight at their respective nodes. Once the

weights are being updated, we are again testing the

network by forward propagation. If the output isn‘t

matching with the desired output still, then we again

find error signal and implement back propagation again.

This process is continued until the desired output is

being achieved from the neural network [18, 19].

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 19

Fig. 5: Feed forward neural network architecture of non-linear system as XOR gate

3. IMPLEMENTATION AND RESULTS

This section shows two different methods of

implementing ANN for XOR gate:

3.1). Implementing ANN using Google Colab Using

Python

3.2) Implementing ANN using ANN using Matlab

Simulink

3.1). Implementing ANN using Google Colab Using

Python: First open Google Colab from Chrome search

or any of its alternatives and create a new file of file

type. ipynb. Now before coding we must import some

necessary libraries such as NumPy and matplotlib.

NumPy is mainly used in python code for working with

arrays. Matplotlib is used for plotting necessary graph

for better analysis. After importing libraries, we must

define the activation function. The activation function

that we are using is sigmoid function. After this we start

initializing all the parameters such as input and output

neurons, hidden layers, weights, bias, epochs, and

learning rate. We use rand function which assigns a

random value to the weights and assign zero value to

the bias input using function zeros. Next step is to use

all the parameters for defining forward propagation.

Here we multiply the input with weight using dot

function and add biasing input. Then we provide the

output of this computation to the activation function. In

this way the forward propagation from input to the

hidden layer has been designed and coded. Now we do

the same computation for traversing from the hidden

layer to output layer. Now after defining Forward

propagation, we will define backward propagation

algorithm to update the weights so that the neural

network can learn and give the proper output. Now to

train the network we provide the inputs of XOR gate

and also the desired outputs using NumPy library. After

this we set the learning rate of the network and epochs.

Epochs is used to provide number of iterations the

training should undergo to update the weights and

increase the efficiency of the network. Once the training

is completed, we shall calculate the efficiency of the

network using losses. By plotting losses v/s epochs we

understand efficiency of the network increasing as the

number of epochs is increased. Epochs are usually kept

at higher value to give more iteration to improve neural

network. Final step is to print the actual output.

Fig. 6: Flowchart of Methodology used in Google Colab

for XOR gate

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 20

STEP 1: Import the Required Python Libraries

To create neural network import Numpy and

name it as np. Also import matplotlib for plotting the

graph for the given data.

STEP 2: Define Activation Function [Sigmoid]

First, we are defining the activation function.

We are using sigmoid function which is the most used

activation function in neural networks.

FORMULA = 1/(1+exp(u))

Where, u = input data given to the sigmoid function.

STEP 3: Initialize Neural Network Parameters

In this step we are initializing the parameters

such as weights and bias to the neural network. W1 is

the weight present between input and hidden layer

node. W2 is the weight present between hidden layer

and output node. b1 and b2 are the biasing inputs given

at hidden layer and output layer respectively.

STEP 4: Define Forward Propagation and Back

Propagation Algorithm

After defining the parameters, we initialize

them while defining forward propagation algorithm. Z1

and Z2 holds the input to hidden layer node multiplied

with their associated weights.

FORMULA:

Zi = ∑Wij*Xi + bi

Where, Z = summation of input multiplied with their

respective weights added with a bias.

After calculating Z1 and Z2 they are given as

input to sigmoid function and the final output is stored

A1 and A2 respectively. A1 holds the final output value

at hidden layer and A2 holds the final output at output

layer. Cache is used to store the parameter values and

cost function is calculated to find error in actual output

obtained.

In back propagation definition, first we have to

calculate error signal value which is obtained by

subtracting desired output from the actual output. Using

this error signal, we are updating the weights and bias

inputs using relevant formulas.

STEP 5: Update the Weight And Bias Parameters

After back propagation has been implemented,

the gradients obtained from it have to be used to update

the parameters.

Wi = Wi – η* ΔWi

Where,

Wi = weight to be updated

ΔWi = gradient value to be used to update weights

η = learning rate

Once the weights have been updated, we must

return them to the variable used to store which is named

as Parameter and implement the same in forward

propagation algorithm.

STEP 6: Train the Neural Network Model and Test It

Once all parameters and algorithms such as

forward and backward propagation algorithm, it is time

to call all these functions under training function to

train the neural network. Here we are initializing the

inputs, desired output, epochs and learning rate to train

the model. Once the model is trained, we must test it by

providing input via the log tab and verify the output. If

the output isnot matching with the desired output then

increases number of iterations or epochs to further train

the network.

STEP 7: Performance Analysis

To accurately measure the performance of the

neural network we are calculating losses. With respect

to epochs, we are plotting the graph of epochs V/s

losses where losses is set to high at the initial stage

before training the model.

Fig. 7: Performance of NN for XOR gate using Google Colab

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 21

From fig.7, we can observe that initially the

loss is high, but as the neural network is trained its loss

value decreases with increase in epochs.

3.2). Implementing ANN Using Matlab Simulink:
There are various ways to implement ANN in Matlab.

One among them is Simulink where a neural network

can be built hands on using inbuilt library functional

blocks which are already predefined in the library. Also,

one can code the neural network in Matlab and the same

can be converted into Simulink model without creating

the model manually. Hence this tool is very versatile

when compared to other tools regarding neural network.

For our project implementing XOR gate using Simulink

has been done manually where we have built an already

trained neural network and simulating its functionality

in Simulink software. In this model we have two input

layers acting as input terminals of an XOR gate. Since

XOR gate gives a non-linear output, we are using two

hidden layers for compensating this non-linear property.

At input neuron, we are connecting clock signal to a

switch terminal, when the clock pulse is low output of

the switch gives an output of logic ‗0‘ and when the

clock signal is high, the switch gives an output of logic

‗1‘. These output signals coming from input layer are

multiplied by weights which are already tuned to

provide the right functionality for the neural network.

At the hidden layer these input signals are added by a

summer along with a bias input and the output of the

summer is given as input to an activation function. The

activation function used here is called ReLu function.

This function gives a output logic ‗0‘ if the input is less

than the value ‗0‘, and if the input is more than the

value ‗0‘ then the output is logic ‗1‘. After this process,

the hidden layer output is connected to the output layer

via a node which is also multiplied by its associated

weights and then allowed to enter the output neuron.

The same procedure that of the hidden layer is followed

in the output layer and the final output will be in terms

of either logic‘0‘ or logic ‗1‘. Consider fig. 8, which is

representing XOR gate implemented in a neural

network using Matlab Simulink software. In this block

diagram there are three layers, they are Input Layers,

Hidden Layers and one Output Layer. Scope block is

predefined in Matlab Simulink which is used for

displaying the final output waveform of the XOR gate.

Since the value of weights between input layer and

hidden layer is 1, we are ignoring them. The weight

(w3) between hidden layer 1 and output layer is -2, we

are using a multiplier block which is predefined in

Matlab Simulink to represent the weight (w3). In input

layer there are 2 input neurons, hidden layer there is 2

neuron namely hidden layer 1 and hidden layer 2 and in

output layer there is 1 output neuron. These neurons are

a subsystem defined in the Simulink library that has

their own individual block diagram and its associated

waveforms.

Fig. 8: Neural network of XOR in Simulink

3.2.1). INPUT LAYER NEURON 1

One of the distinct characteristics of the input

layer is that artificial neurons in the input layer have a

different role. Passive neurons do not take the

information from the previous layers because they are

the first layer of the neural network. Based upon the

design shown in fig.9 for input layer neuron 1, the

corresponding output waveform of the input layer is

obtained and as shown in fig.10. Here total time

duration of the waveform is 10 units and for every 5

units of clock pulses applied waveform of input layer

triggers.

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 22

Fig. 9: Input layer of Neuron 1 in Simulink

Fig. 10: Output of Input layer of Neuron 1

3.2.2). INPUT LAYER NEURON 2

This input neuron 2 is similar to the previous

input neuron except for the time duration of 10 units the

output waveform triggers for every 2.5 seconds

respectively. Based upon the design shown in fig.11,

the corresponding output waveform is obtained and is

shown in fig.12.

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 23

Fig. 11: Input layer of Neuron 2

Fig. 12: Output of Input layer of Neuron 2

3.2.3). HIDDEN NEURON 1

A hidden layer in an artificial neural network

is a layer in between input layers and output layers,

where artificial neurons take in a set of weighted inputs

and produce an output through an activation function. It

is a typical part of nearly any neural network in which

we simulate the activities that occur in the human brain.

Hidden neural network layers are set up in many ways.

In some cases, weighted inputs are randomly assigned.

In other cases, they are fine-tuned and calibrated

through a process called back propagation. Based upon

the design of hidden layer of neuron 1 as shown in fig.

13, the corresponding output waveform of that neuron

is obtained and as shown in fig. 14.

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 24

Fig. 13: Hidden layer of Neuron 1

Fig. 14: Output of Hidden layer belongs to neuron 1

3.2.4). HIDDEN NEURON 2

The block diagram of hidden layer 2 is similar

to the first hidden layer except the bias input differs.

The bias input in the previous hidden layer is -1.5, but

here the input bias applied is -0.5. The output waveform

of the hidden layer 2 is shown below; the summation

output present in the block diagram varies from -0.5 to

1.5. The activation function coverts the negative input

as logic 0. And the values above zero are set as high or

logic 1 by the activation function. Based upon the

design shown in fig.15 the corresponding output is

obtained and is as shown in fig. 16.

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 25

Fig. 15: Hidden layer of Neuron 2

Fig. 16: Output of Hidden layer belongs to neuron 2

3.2.5). ACTIVATION FUNCTION

Here the activation function used is ReLU

function. The input signal is denoted as ‗u‘ and the

output signal is denoted as ‗y‘. As you can see from the

fig.17, if the input function is greater than or equal to 0,

then the output signal becomes high or gives logic ‗1‘.

Else if the input function is less than zero then the

output is set as low or logic ‗0‘. The piece of code for

activation function used in this implementation is as

shown below.

Fig. 17: Matlab code for ReLU function

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 26

The fig.18 represents the output layer which

receives input from the two hidden layers. The first

hidden layer node is having a weight of -2, while the

second hidden layer node is having a weight associated

as 1.

Fig. 18: Neuron of output layer

3.2.6). OUTPUT LAYER

The waveform shown in fig.19 is output

waveform obtained from the output layer. The blue line

represents the summation output, and the black line

represents the activation function.

Fig. 19: Output of output neuron

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 27

4. COMPARATIVE ANALYSIS

 MATLAB SIMULINK GOOGLE COLAB

Simulink uses Matlab code . Google colab uses python code.

Easy to build neural network. Building a neural network is complex.

Simulink has in-built and predefined library

blocks to construct the neural network.

Google colab does not have in built and predefined library block

to construct the neural network.

No requirement to import additional libraries

while coding in Matlab.

There is a requirement to import additional libraries while

coding in Python.

Less Flexible More Flexible

For complex neural networks Matlab is

preferable.

For complex neural networks Google colab is less preferable.

It has a dedicated software for ‗Deep learning‘

applications.

For Deep learning applications we use tensorflow and its

libraries.

5. CONCLUSION
We can conclude that XOR problem is non-

linear system and has got the solution by implementing

it by using neural network with one hidden layer. Back

propagation algorithm is used to tune synaptic weights

in order to get desired results of XOR output.

Performance analysis is carried out for XOR gate logic

using Matlab and Google Colab. Matlab code is more

efficient for analysis of the model and it has dedicated

tools for implementing neural network. But Google

Colab is widely used as it can implement neural

network using one the most widely implemented

language i.e., python. Further this can be verified on

edge computing hardware platforms like Arduino nano

33 BLE and Raspberry Pi 4.

REFERENCES
1. Piccialli, V., & Sciandrone, M. (2022). Nonlinear

optimization and support vector machines. Ann

Oper Res, 314, 15–

47.https://doi.org/10.1007/s10479-022-04655-x

2. Cyr, A., Thériault, F., & Chartier, S. (2020).

Revisiting the XOR problem: a neurorobotic

implementation. Neural Comput & Applic, 32,

9965–9973. https://doi.org/10.1007/s00521-019-

04522-0

3. Viswanatha, V., Chandana, R. K., & Ramachandra.

A. C. (2022). "Real Time Object Detection System

with YOLO and CNN Models: A Review."

4. Borah, P., & Gupta, D. (2020). ―Unconstrained

convex minimization based implicit Lagrangian

twin extreme learning machine for classification

(ULTELMC),‖ Applied Intelligence, 50(4), 1327–

1344.

5. Behrends, A., & Scheiner, R. (2012). Octopamine

improves learning in newly emerged bees but not

in old foragers. J Exp Biol, 215(7), 1076-1083.

6. Nalepa, J., & Kawulok, M. (2019). Selecting

training sets for support vector machines: a review.

Artificial Intelligence Review, 52(2), 857–900.

7. Viswanatha, V., Chandana, R. K., & Ramachandra,

A. C. (2022). IoT Based Smart Mirror Using

Raspberry Pi 4 and YOLO Algorithm: A Novel

Framework for Interactive Display. Indian Journal

of Science and Technology, 15(39), 2011-2020.

8. Krichmar, J. L. (2018). Neurorobotics—a thriving

community and a promising pathway toward

intelligent cognitive robots. Front Neurorobot, 12,

42.

9. Yoo, K. H., Koo, Y. D., Ju, H. B., & Na, M. G.

(2017). Identification of LOCA and estimation of

its break size by multiconnected support vector

machines. IEEE Transactions on Nuclear Science,

64(10), 1.

10. Zhang, L., Lu, X., & Lu, C. (2017). National

matriculation test prediction based on support

vector machines. Journal of University of Science

& Technology of China, 47(1), 1–9,

11. Viswanatha, V., Ashwini, K., & Sathisha, B. M.

(2022). Implementation of IoT in Agriculture: A

Scientific Approach for Smart Irrigation. 2022

IEEE 2nd Mysore Sub Section International

Conference (MysuruCon). IEEE.

12. Tanino, T., Kawachi, R., & Akao, M. (2017).

Performance evaluation of multiobjective

multiclass support vector machines maximizing

geometric margins. Numerical Algebra Control &

Optimization, 1(1), 151–169.

13. Gu, W., Chen, W.-P., & Ko, C.-H. (2018). Two

smooth support vector machines for -insensitive

regression. Computational Optimization &

Applications, 70(1), 1–29.

14. Taherzadeh, G., Zhou, Y., Liew, A. W.-C., &

Yang, Y. (2016). Sequence-based prediction of

protein-carbohydrate binding sites using support

vector machines. Journal of Chemical Information

and Modeling, 56(10), 2115–2122.

15. Balasundaram, S., & Gupta, D. (2016).

Knowledge-based extreme learning machines.

Neural Computing and Applications, 27(6), 1629–

1641.

16. Viswanatha, V., Sathisha, B. M., & Ashwini, K.

(2022). Custom Hardware and Software

Integration: Bluetooth Based Wireless Thermal

Printer for Restaurant and Hospital Management.

2022 IEEE 2nd Mysore Sub Section International

Conference (MysuruCon). IEEE.

Viswanatha V et al; Saudi J Eng Technol, Jan, 2023; 8(1): 16-28

© 2023 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 28

17. Ehrentraut, C., Ekholm, M., Tanushi, H.,

Tiedemann, J., & Dalianis, H. (2016). Detecting

hospital-acquired infections: a document

classification approach using support vector

machines and gradient tree boosting. Health

Informatics Journal, 24(1), 24–42.

18. Zhang, X., Li, Y., & Peng, X. (2016). Brain wave

recognition of word imagination based on support

vector machines. Chinese Journal of Aerospace

Medicine, 14(3), 277–281.

19. Viswanatha, V., Ashwini, K., & Pradeep, K.

(2021). Internet of things (IoT) based multilevel

drunken driving detection and prevention system

using Raspberry Pi 3. International Journal of

Internet of Things and Web Services, 6.

