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Abstract  
 

To find solution for XOR problem we are considering two widely used software that is being relied on by many software 

developers for their work. The first software is Google Colab tool which can be used to implement ANN programs by 

coding the neural network using python. This tool is reliable since it supports python language for its implementation. 

The other major reason is that we can use GPU and TPU processors for the computation process of the neural network. 

The major advantage of this is that for complex Neural Networks instead of using CPU present in the user‘s system we 

can use those two processors through online mode without purchasing such processors for our computation. The next 

software that can be used for implementing ANN is Matlab Simulink. This software is used for highly calculative and 

computational tasks such as Control System, Deep Learning, Machine Learning, Digital Signal Processing and many 

more. Matlab is highly efficient and easy to code and use when compared to any other software. This is because Matlab 

stores data in the form of matrices and computes them in this fashion. Matlab in collaboration with Simulink can be used 

to manually model the Neural Network without the need of any code or knowledge of any coding language. Since 

Simulink is integrated with Matlab we can also code the Neural Network in Matlab and obtain its mathematically 

equivalent model in Simulink. Also, Matlab has a dedicated tool in its library to implement neural network called NN 

tool. Using this tool, we can directly add the data for input, desired output, or target. After inserting the required data, we 

can train the network with the given dataset and receive appropriate graph‘s which will be helpful in analyzing the data. 

Once the Neural Network is trained, we can test the network through this tool and verify the obtained results.  

Keywords: XOR problem, Back propagation, Feature extraction, Deep learning. 
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1. INTRODUCTION 
Artificial Neural Network is a part of Deep 

Learning which is widely used in this generation as it is 

the next arising technology with immense scope in the 

present IT sector. The main reason for developing ANN 

is to try to simulate the working of a human brain [1]. 

The Human brain is a complex organ consisting of 

various networks interconnected to each other through 

neurons. A neuron is the basic building block of a 

network on which the neural network works upon. If 

this vast network of complexity can be utilized by a 

machine it can perform wonders beyond human 

imagination [2]. Hence research regarding Neural 

Network has been initiated. From the diagram shown in 

fig.1, we can compare a neuron with the block diagram 

representation of the ANN. The Dendrites acts as the 

input for the neuron, And the main nucleus is 

represented as a summer present in the ANN network. 

The Axons are represented as nodes connecting the next 

neuron with weights associated with it [3-5]. 
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Fig. 1: Neuron with the block diagram representation 

 

In this sector we are going to discuss about 

implementing XOR gate shown in fig. 2 in the form of a 

Neural Network. Unlike the other basic gates such as 

AND, OR and NOT Gates, XOR gate cannot be 

realised as a neural network easily. This is because of 

non-linearity condition which is observed in XOR gate 

when compared to other basic gates [6-8]. All the 

outputs such as logic 0‘s and logic 1‘s of other gates 

can be separated with a straight line plotted on the 

graph, but that is not the case for XOR Gate. Hence this 

gate cannot be realized with a basic neural network 

containing an input and an output layer. Hence to solve 

this problem we are using two hidden layer which lies 

between the input and output neuron. And also, we have 

to use back propagation algorithm to update the weights 

and produce the desired output [9-11]. 

 

 
Fig. 2: XOR gate with functional logic 

 

When we consider basic gates such as AND, 

OR and NOT gates we can realize these gates and 

implement them into neural network easily using single 

layer perception consisting of only input layers and 

output layers as shown in fig.3 of OR gate. But the 

same methodology cannot be used to implement an 

XOR gate as the output of the XOR gate is not linear. 

Hence the outputs cannot be separated using a straight 

line as shown in the fig.3 of XOR gate.. To solve this 

issue we use multilayer perception which consists of 

input layers, hidden layers and output layers. The 

hidden layers are used to provide a non-linear property 

to the neural network. Hence by using two hidden 

layers we can implement XOR gate in a neural network 

[12-15]. 
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Fig. 3: Data space in plane for OR and XOR gates 

 

2. METHODOLOGY 
The neural network architecture of a XOR gate 

is as shown in fig.4. This network is called forward 

propagation network as the signal flow traverse from 

input to output in a linear path. In this network we have 

two input layers which give out the two inputs of a 

XOR gate. There are two hidden layers present and they 

are being provided with a biasing input [B1 & B2] at 

their respective nodes. These two hidden layers are 

connected to the output layer in which the output layer 

is also being provided with a biasing input [B3]. 

Between the input and hidden layers there are weights 

attached to each node [W1,W2,W3 &W4] and also 

between hidden layer and output weights[W5 & W6] 

are present. As the signal passes through these nodes, 

they are multiplied by their respective nodes before 

entering the neuron for further computation. This is a 

Feed Forward network as there are no feedback loops 

present to pass the output value back to the input [16, 

17]. 

 

 
Fig. 4: Neural network architecture of non-linear system as XOR gate 

 

The architecture shown in fig. 5 displays us the 

application of the back propagation algorithm to Feed 

Forward XOR Neural Network. Here if the Neural 

network fails to give out the desired output. Hence, we 

implement back propagation algorithm to tune the 

weights. The error signal generated is taken as input and 

it is used for computation of change in weight. The 

change in weight must be calculated for each node 

present in the neural network. Once this change of 

weight is calculated they must be added to their 

respective weight at their respective nodes. Once the 

weights are being updated, we are again testing the 

network by forward propagation. If the output isn‘t 

matching with the desired output still, then we again 

find error signal and implement back propagation again. 

This process is continued until the desired output is 

being achieved from the neural network [18, 19]. 
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Fig. 5: Feed forward neural network architecture of non-linear system as XOR gate 

 

3. IMPLEMENTATION AND RESULTS 

This section shows two different methods of 

implementing ANN for XOR gate: 

3.1). Implementing ANN using Google Colab Using 

Python  

3.2) Implementing ANN using ANN using Matlab 

Simulink  

 

3.1). Implementing ANN using Google Colab Using 

Python: First open Google Colab from Chrome search 

or any of its alternatives and create a new file of file 

type. ipynb. Now before coding we must import some 

necessary libraries such as NumPy and matplotlib. 

NumPy is mainly used in python code for working with 

arrays. Matplotlib is used for plotting necessary graph 

for better analysis. After importing libraries, we must 

define the activation function. The activation function 

that we are using is sigmoid function. After this we start 

initializing all the parameters such as input and output 

neurons, hidden layers, weights, bias, epochs, and 

learning rate. We use rand function which assigns a 

random value to the weights and assign zero value to 

the bias input using function zeros. Next step is to use 

all the parameters for defining forward propagation. 

Here we multiply the input with weight using dot 

function and add biasing input. Then we provide the 

output of this computation to the activation function. In 

this way the forward propagation from input to the 

hidden layer has been designed and coded. Now we do 

the same computation for traversing from the hidden 

layer to output layer. Now after defining Forward 

propagation, we will define backward propagation 

algorithm to update the weights so that the neural 

network can learn and give the proper output. Now to 

train the network we provide the inputs of XOR gate 

and also the desired outputs using NumPy library. After 

this we set the learning rate of the network and epochs. 

Epochs is used to provide number of iterations the 

training should undergo to update the weights and 

increase the efficiency of the network. Once the training 

is completed, we shall calculate the efficiency of the 

network using losses. By plotting losses v/s epochs we 

understand efficiency of the network increasing as the 

number of epochs is increased. Epochs are usually kept 

at higher value to give more iteration to improve neural 

network. Final step is to print the actual output. 

 

 
Fig. 6: Flowchart of Methodology used in Google Colab 

for XOR gate 
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STEP 1: Import the Required Python Libraries 

To create neural network import Numpy and 

name it as np. Also import matplotlib for plotting the 

graph for the given data. 

 

STEP 2: Define Activation Function [Sigmoid]  

First, we are defining the activation function. 

We are using sigmoid function which is the most used 

activation function in neural networks. 

FORMULA = 1/(1+exp(u)) 

Where, u = input data given to the sigmoid function. 

 

STEP 3: Initialize Neural Network Parameters  

In this step we are initializing the parameters 

such as weights and bias to the neural network. W1 is 

the weight present between input and hidden layer 

node. W2 is the weight present between hidden layer 

and output node. b1 and b2 are the biasing inputs given 

at hidden layer and output layer respectively.  

 

STEP 4: Define Forward Propagation and Back 

Propagation Algorithm 

After defining the parameters, we initialize 

them while defining forward propagation algorithm. Z1 

and Z2 holds the input to hidden layer node multiplied 

with their associated weights. 

FORMULA:  

Zi = ∑Wij*Xi + bi 

Where, Z = summation of input multiplied with their 

respective weights added with a bias.  

 

After calculating Z1 and Z2 they are given as 

input to sigmoid function and the final output is stored 

A1 and A2 respectively. A1 holds the final output value 

at hidden layer and A2 holds the final output at output 

layer. Cache is used to store the parameter values and 

cost function is calculated to find error in actual output 

obtained. 

 

In back propagation definition, first we have to 

calculate error signal value which is obtained by 

subtracting desired output from the actual output. Using 

this error signal, we are updating the weights and bias 

inputs using relevant formulas.  

 

STEP 5: Update the Weight And Bias Parameters 

After back propagation has been implemented, 

the gradients obtained from it have to be used to update 

the parameters. 

Wi = Wi – η* ΔWi 

Where, 

Wi = weight to be updated  

ΔWi = gradient value to be used to update weights  

η = learning rate 

 

Once the weights have been updated, we must 

return them to the variable used to store which is named 

as Parameter and implement the same in forward 

propagation algorithm. 

 

STEP 6: Train the Neural Network Model and Test It  

Once all parameters and algorithms such as 

forward and backward propagation algorithm, it is time 

to call all these functions under training function to 

train the neural network. Here we are initializing the 

inputs, desired output, epochs and learning rate to train 

the model. Once the model is trained, we must test it by 

providing input via the log tab and verify the output. If 

the output isnot matching with the desired output then 

increases number of iterations or epochs to further train 

the network.  

 

STEP 7: Performance Analysis 

To accurately measure the performance of the 

neural network we are calculating losses. With respect 

to epochs, we are plotting the graph of epochs V/s 

losses where losses is set to high at the initial stage 

before training the model. 

 

 
Fig. 7: Performance of NN for XOR gate using Google Colab 
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From fig.7, we can observe that initially the 

loss is high, but as the neural network is trained its loss 

value decreases with increase in epochs. 

 

3.2). Implementing ANN Using Matlab Simulink: 
There are various ways to implement ANN in Matlab. 

One among them is Simulink where a neural network 

can be built hands on using inbuilt library functional 

blocks which are already predefined in the library. Also, 

one can code the neural network in Matlab and the same 

can be converted into Simulink model without creating 

the model manually. Hence this tool is very versatile 

when compared to other tools regarding neural network. 

For our project implementing XOR gate using Simulink 

has been done manually where we have built an already 

trained neural network and simulating its functionality 

in Simulink software. In this model we have two input 

layers acting as input terminals of an XOR gate. Since 

XOR gate gives a non-linear output, we are using two 

hidden layers for compensating this non-linear property. 

At input neuron, we are connecting clock signal to a 

switch terminal, when the clock pulse is low output of 

the switch gives an output of logic ‗0‘ and when the 

clock signal is high, the switch gives an output of logic 

‗1‘. These output signals coming from input layer are 

multiplied by weights which are already tuned to 

provide the right functionality for the neural network. 

At the hidden layer these input signals are added by a 

summer along with a bias input and the output of the 

summer is given as input to an activation function. The 

activation function used here is called ReLu function. 

This function gives a output logic ‗0‘ if the input is less 

than the value ‗0‘, and if the input is more than the 

value ‗0‘ then the output is logic ‗1‘. After this process, 

the hidden layer output is connected to the output layer 

via a node which is also multiplied by its associated 

weights and then allowed to enter the output neuron. 

The same procedure that of the hidden layer is followed 

in the output layer and the final output will be in terms 

of either logic‘0‘ or logic ‗1‘. Consider fig. 8, which is 

representing XOR gate implemented in a neural 

network using Matlab Simulink software. In this block 

diagram there are three layers, they are Input Layers, 

Hidden Layers and one Output Layer. Scope block is 

predefined in Matlab Simulink which is used for 

displaying the final output waveform of the XOR gate. 

Since the value of weights between input layer and 

hidden layer is 1, we are ignoring them. The weight 

(w3) between hidden layer 1 and output layer is -2, we 

are using a multiplier block which is predefined in 

Matlab Simulink to represent the weight (w3). In input 

layer there are 2 input neurons, hidden layer there is 2 

neuron namely hidden layer 1 and hidden layer 2 and in 

output layer there is 1 output neuron. These neurons are 

a subsystem defined in the Simulink library that has 

their own individual block diagram and its associated 

waveforms. 

 

 
Fig. 8: Neural network of XOR in Simulink 

 

3.2.1). INPUT LAYER NEURON 1 

One of the distinct characteristics of the input 

layer is that artificial neurons in the input layer have a 

different role. Passive neurons do not take the 

information from the previous layers because they are 

the first layer of the neural network. Based upon the 

design shown in fig.9 for input layer neuron 1, the 

corresponding output waveform of the input layer is 

obtained and as shown in fig.10. Here total time 

duration of the waveform is 10 units and for every 5 

units of clock pulses applied waveform of input layer 

triggers.  
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Fig. 9: Input layer of Neuron 1 in Simulink 

 

 
Fig. 10: Output of Input layer of Neuron 1 

 

3.2.2). INPUT LAYER NEURON 2 

This input neuron 2 is similar to the previous 

input neuron except for the time duration of 10 units the 

output waveform triggers for every 2.5 seconds 

respectively. Based upon the design shown in fig.11, 

the corresponding output waveform is obtained and is 

shown in fig.12. 
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Fig. 11: Input layer of Neuron 2 

 

 
Fig. 12: Output of Input layer of Neuron 2 

 

3.2.3). HIDDEN NEURON 1 

A hidden layer in an artificial neural network 

is a layer in between input layers and output layers, 

where artificial neurons take in a set of weighted inputs 

and produce an output through an activation function. It 

is a typical part of nearly any neural network in which 

we simulate the activities that occur in the human brain. 

Hidden neural network layers are set up in many ways. 

In some cases, weighted inputs are randomly assigned. 

In other cases, they are fine-tuned and calibrated 

through a process called back propagation. Based upon 

the design of hidden layer of neuron 1 as shown in fig. 

13, the corresponding output waveform of that neuron 

is obtained and as shown in fig. 14. 
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Fig. 13: Hidden layer of Neuron 1 

 

 
Fig. 14: Output of Hidden layer belongs to neuron 1 

 

3.2.4). HIDDEN NEURON 2 

The block diagram of hidden layer 2 is similar 

to the first hidden layer except the bias input differs. 

The bias input in the previous hidden layer is -1.5, but 

here the input bias applied is -0.5. The output waveform 

of the hidden layer 2 is shown below; the summation 

output present in the block diagram varies from -0.5 to 

1.5. The activation function coverts the negative input 

as logic 0. And the values above zero are set as high or 

logic 1 by the activation function. Based upon the 

design shown in fig.15 the corresponding output is 

obtained and is as shown in fig. 16. 
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Fig. 15: Hidden layer of Neuron 2 

 

 
Fig. 16: Output of Hidden layer belongs to neuron 2 

 

3.2.5). ACTIVATION FUNCTION 

Here the activation function used is ReLU 

function. The input signal is denoted as ‗u‘ and the 

output signal is denoted as ‗y‘. As you can see from the 

fig.17, if the input function is greater than or equal to 0, 

then the output signal becomes high or gives logic ‗1‘. 

Else if the input function is less than zero then the 

output is set as low or logic ‗0‘. The piece of code for 

activation function used in this implementation is as 

shown below.  

 

 
Fig. 17: Matlab code for ReLU function 
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The fig.18 represents the output layer which 

receives input from the two hidden layers. The first 

hidden layer node is having a weight of -2, while the 

second hidden layer node is having a weight associated 

as 1. 

 

 
Fig. 18: Neuron of output layer 

 

3.2.6). OUTPUT LAYER 

The waveform shown in fig.19 is output 

waveform obtained from the output layer. The blue line 

represents the summation output, and the black line 

represents the activation function. 

 

 
Fig. 19: Output of output neuron 
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4. COMPARATIVE ANALYSIS 
 

 MATLAB SIMULINK  GOOGLE COLAB 

Simulink uses Matlab code . Google colab uses python code. 

Easy to build neural network. Building a neural network is complex. 

Simulink has in-built and predefined library 

blocks to construct the neural network. 

Google colab does not have in built and predefined library block 

to construct the neural network. 

No requirement to import additional libraries 

while coding in Matlab. 

There is a requirement to import additional libraries while 

coding in Python. 

Less Flexible  More Flexible 

For complex neural networks Matlab is 

preferable. 

For complex neural networks Google colab is less preferable. 

It has a dedicated software for ‗Deep learning‘ 

applications. 

For Deep learning applications we use tensorflow and its 

libraries. 

 

5. CONCLUSION 
We can conclude that XOR problem is non-

linear system and has got the solution by implementing 

it by using neural network with one hidden layer. Back 

propagation algorithm is used to tune synaptic weights 

in order to get desired results of XOR output. 

Performance analysis is carried out for XOR gate logic 

using Matlab and Google Colab. Matlab code is more 

efficient for analysis of the model and it has dedicated 

tools for implementing neural network. But Google 

Colab is widely used as it can implement neural 

network using one the most widely implemented 

language i.e., python. Further this can be verified on 

edge computing hardware platforms like Arduino nano 

33 BLE and Raspberry Pi 4. 
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