3@ OPEN ACCESS

Saudi Journal of Engineering and Technology
Abbreviated Key Title: Saudi J Eng Technol

ISSN 2415-6272 (Print) [ISSN 2415-6264 (Online)

Scholars Middle East Publishers, Dubai, United Arab Emirates

Journal homepage: https://saudijournals.com

Original Research Article

Advanced Damage Detection and Load Optimization in Hybrid Composite
Structures Using Multi-Scale Simulation and Machine Learning

Shanmugam Kamalanathan'*

Infosys Ltd, Madras University

DOI: https://doi.org/10.36348/sjet.2025.v10i12.007 | Received: 24.10.2025 | Accepted: 20.12.2025 | Published: 26.12.2025

*Corresponding author: Shanmugam Kamalanathan
Infosys Ltd, Madras University

Hybrid composite structures (e.g., carbon—glass laminates, fiber—metal laminates, and multi-material sandwich panels)
offer superior stiffness-to-weight performance but exhibit complex, multi-mode damage mechanisms such as matrix
cracking, fiber breakage, delamination, and interface debonding. These damage modes are often difficult to detect early
and expensive to simulate at full structural scale with high fidelity. This paper proposes an integrated framework that
combines multi-scale progressive damage simulation with machine learning (ML)-assisted damage inference and load
optimization. At the microscale and mesoscale, damage initiation and evolution are captured using established composite
failure criteria and degradation laws (e.g., Hashin-type mechanisms), while structural-scale response is computed using
reduced-order surrogates calibrated from multi-scale results. On the data side, guided-wave/shock-response features and
simulated strain-field descriptors are mapped to damage states using supervised and uncertainty-aware ML models. Finally,
a load optimization module minimizes peak interlaminar stresses and damage growth rate under service constraints. A case
study on a hybrid laminate panel demonstrates that the proposed pipeline can (i) identify early delamination and matrix
cracking signatures with high classification performance, and (ii) reduce damage-driving stress metrics through ML-guided
load redistribution.
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I. INTRODUCTION

Hybrid composite structures, formed by
combining different fiber types, matrix systems, or
multi-material layers within a single laminate, have
emerged as a cornerstone of modern high-performance
engineering design. Their adoption is driven by the need
to simultaneously achieve lightweight construction, high
stiffness and strength, tailored anisotropy, and improved
damage  tolerance  across  diverse  operating
environments.  Unlike  conventional = monolithic
materials, hybrid composites enable designers to
strategically place material capabilities where they are
most effective, resulting in superior structural efficiency

debonding, can evolve into mesoscale ply cracking and
interlaminar delamination, ultimately affecting global
stiffness, load paths, and structural integrity. These
coupled damage processes are often difficult to detect at
early stages using conventional inspection methods and
challenging to predict accurately using single-scale
analytical or numerical models. As a result, there is a
growing need for integrated approaches that can both
predict damage evolution through physics-based
modeling and detect damage states through data-driven
interpretation of structural response. Recent advances in
computational mechanics, sensor technologies, and
machine learning provide an opportunity to address these

and functional adaptability. However, this material
heterogeneity also introduces significant complexity in
damage initiation, propagation, and structural response
under realistic loading conditions. Damage in hybrid
composite structures is inherently multi-scale and multi-
mechanism in nature. Localized microscale phenomena,
such as matrix micro-cracking and fiber—matrix

challenges in a unified manner. Multi-scale simulation
techniques enable detailed modeling of damage
mechanisms across length scales, while machine
learning offers powerful tools for pattern recognition,
damage classification, and real-time inference from
complex, high-dimensional data. When combined with
surrogate modeling and optimization strategies, these
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tools can move beyond passive damage detection toward
active load management and operational decision
support. In this context, the present work aims to bridge
physics-based damage modeling and data-driven
intelligence to enhance both damage detection and load
optimization in hybrid composite structures.

A. Background and Motivation

Hybrid composite structures are increasingly
used in aerospace, wind energy, automotive, marine, and
civil infrastructure due to their lightweight efficiency and
design flexibility. However, unlike isotropic metals,
composites fail through interacting mechanisms across
scales: microscale fiber/matrix damage, mesoscale ply
cracking and delamination, and structural-scale
instability. This multi-physics complexity makes
damage detection and operational load management
critical. Conventional nondestructive evaluation (NDE)
and structural health monitoring (SHM) methods can
identify damage, but robust early detection remains
challenging in anisotropic laminates where wave
propagation and scattering become highly complex.
NASA and other agencies have highlighted guided-wave
based damage signature classification as a promising
direction for composite inspection and SHM._In parallel,
multi-scale modeling has advanced substantially and is
increasingly used to predict damage initiation and
growth in composites; however, these simulations are
often computationally intensive when deployed at full
structural scale. Recent multiscale damage modeling
reviews emphasize the need for reduced-order models,
surrogate approaches, and data-driven methods to bridge
fidelity and speed.

B. Problem Statement
Hybrid composite structures present three practical
challenges:

1. Damage complexity: Multiple interacting
damage modes occur concurrently (matrix
cracking — delamination — fiber failure), often
with weak observability at early stages.

2. Computational cost: High-fidelity multi-scale
simulation across large structures is too slow for
real-time decision support.

3. Operational uncertainty: Real loads are
variable; fixed design loads and static safety
factors may not prevent progressive damage
during service.

C. Proposed Solution
This paper proposes a unified approach that combines:

e  Multi-scale progressive damage simulation
(micro/meso — structural), using physics-based
failure criteria and degradation laws (e.g.,
Hashin-type mechanisms for UD lamina)

e Machine learning damage inference, using
features from guided waves/strain responses,
trained on simulation-labeled data (and
optionally augmented by public SHM datasets).

e Load optimization, where a surrogate model
predicts damage-driving metrics and an
optimizer redistributes loads to reduce
delamination risk and peak damage indices.

D. Contributions

1. A practical multi-scale-to-surrogate pipeline for
hybrid composite damage evolution suitable for
digital-twin style updates.

2. A damage detection module that maps physics-
informed features to damage states, with
uncertainty estimates.

3. A load optimization strategy that reduces
damage-driving  stress  indicators  while
satisfying service constraints.

4. A reproducible case study blueprint (materials,
steps, metrics) that can be adapted to acrospace
panels, beams, or sandwich skins.

II. Related Work

The study of damage detection, modeling, and
optimization in composite and hybrid composite
structures spans multiple research domains, including
composite failure mechanics, fracture and delamination
modeling, multi-scale simulation, structural health
monitoring, and data-driven intelligence. Prior work has
addressed these areas largely in isolation, with physics-
based models focusing on accurate failure prediction and
data-driven methods emphasizing damage identification
from sensor signals. However, recent trends highlight the
need for integrated frameworks that combine
mechanistic understanding with machine learning and
reduced-order modeling to achieve both accuracy and
computational efficiency. This section reviews the most
relevant literature underpinning the proposed approach.
First, classical and advanced progressive failure criteria
used for intralaminar damage prediction are discussed.
Next, cohesive zone—based delamination modeling
techniques are reviewed, followed by advances in multi-
scale modeling that link microstructural behavior to
structural response. The section then examines machine
learning methods for damage detection in composite
structures and guided-wave—based structural health
monitoring approaches. Finally, emerging digital twin
frameworks that integrate physics-based simulation with
data-driven updating are reviewed to contextualize the
motivation for the present work.

A. Progressive Failure Criteria for Composite
Materials

Progressive failure modeling has long been a
central research area in composite mechanics due to the
complex and interacting failure mechanisms present in
fiber-reinforced laminates. Early approaches relied on
phenomenological stress-based criteria to predict failure
initiation, but these methods lacked the ability to
distinguish between different damage mechanisms.
Hashin’s failure criteria introduced a significant
advancement by separating fiber tension, fiber
compression, matrix tension, and matrix compression
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modes, enabling more physically meaningful damage
predictions in unidirectional composites [1]. These
criteria have since been widely implemented in finite
element frameworks for progressive damage analysis.
Subsequent studies extended failure criteria to account
for three-dimensional stress states and interaction effects
between damage modes. In particular, Puck’s action-
plane theory provided a detailed description of inter-fiber
fracture under combined loading, offering improved
accuracy for off-axis plies and complex stress conditions
[2]. Comparative studies show that while Hashin-type
criteria are computationally efficient and robust, Puck-
type models offer higher fidelity for predicting matrix-
dominated failures in hybrid and thick composite
laminates [3]. As a result, modern composite simulations
often employ hybrid criteria depending on the dominant
damage mechanism and required accuracy.

B. Cohesive Zone and Delamination Modeling

Delamination is one of the most critical damage
modes in laminated and hybrid composite structures, as
it directly affects load transfer between plies and can lead
to sudden stiffness degradation. Cohesive zone models
(CZMs) have become the dominant approach for
simulating delamination initiation and growth by
representing interlaminar interfaces with traction—
separation laws [4]. These models capture mixed-mode
fracture behavior by coupling normal and shear
separations and are well suited for simulating adhesive
layers and ply interfaces in hybrid laminates. Extensive
research has focused on calibrating cohesive parameters
using fracture mechanics tests such as double cantilever
beam (DCB) and end-notched flexure (ENF)
experiments [5]. Studies have shown that accurate
delamination prediction requires coupling CZMs with
intralaminar damage models, as matrix cracking often
precedes and drives interlaminar failure [6]. In hybrid
composite systems, material mismatch at interfaces
further complicates delamination behavior, making
cohesive modeling essential for reliable structural
assessment.

C. Multi-Scale Modeling of Composite Damage
Multi-scale modeling approaches aim to link
microscale material behavior to mesoscale laminate
response and structural-scale performance. At the
microscale, representative volume elements (RVEs) are
used to model fiber—matrix interactions, voids, and local
stress concentrations [7]. These microscale simulations
inform effective ply properties, damage initiation
thresholds, and degradation laws that are subsequently
used in mesoscale laminate models. Recent reviews
highlight a growing emphasis on reduced-order and
surrogate-based multi-scale frameworks to overcome the
high computational cost associated with fully resolved
simulations [8]. By combining detailed physics-based
modeling at lower scales with homogenized or data-
driven representations at higher scales, researchers have
demonstrated practical workflows for large composite
structures. Such approaches are particularly relevant for

hybrid composites, where material heterogeneity across
plies demands accurate but efficient multi-scale
representations [9].

D. Machine Learning for Damage Detection in
Composites

Machine learning has emerged as a powerful
tool for damage detection and classification in composite
structures, particularly within the field of structural
health monitoring (SHM). Traditional signal-processing
methods rely on manually engineered features extracted
from guided waves, vibration data, or acoustic emission
signals. ML algorithms such as support vector machines,
random forests, and neural networks have been shown to
significantly improve detection accuracy by learning
complex, nonlinear relationships between features and
damage states [10]. Recent studies emphasize deep
learning approaches, including convolutional neural
networks (CNNs), for automated feature extraction
directly from raw time-series data [11]. These methods
are particularly effective for detecting delamination and
impact damage in composite plates. However, challenges
remain related to data scarcity, environmental variability,
and generalization across structures. To address these
issues, researchers increasingly rely on simulation-
generated datasets and transfer learning strategies [12],
which align closely with the simulation-driven approach
adopted in this work.

E. Guided-Wave-Based
Monitoring

Guided ultrasonic waves are widely used in
SHM of composite structures due to their ability to
propagate over long distances and interact sensitively
with damage. However, anisotropy, dispersion, and
mode conversion in composite laminates complicate
signal interpretation. Extensive experimental and
numerical studies have explored the effects of
delamination, matrix cracking, and fiber breakage on
guided-wave propagation characteristics [13]. Publicly
available datasets, including those released by NASA,
have played a critical role in benchmarking damage
detection algorithms and fostering reproducible research
[14]. These datasets demonstrate that combining time—
frequency analysis with ML classifiers yields robust
damage detection performance. The integration of
guided-wave features with physics-based damage
models further enhances interpretability and reliability,
forming a strong foundation for digital-twin-oriented
SHM frameworks [15].

Structural Health

F. Digital Twin and Physics—Data Integration

Digital twin concepts for composite structures
aim to create continuously updated virtual
representations that reflect the evolving damage state of
physical assets. Recent studies propose coupling finite
element damage models with real-time sensor data
through ML-based wupdating schemes [16]. Such
damage-sensing  digital twins enable predictive
maintenance, remaining useful life estimation, and
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adaptive load management. The literature increasingly
recognizes that purely data-driven twins lack
extrapolation capability, while purely physics-based
models lack adaptability. Hybrid physics—ML
frameworks offer a promising solution by combining
mechanistic understanding with data-driven inference
[17]. This paradigm directly motivates the integrated
multi-scale simulation, machine learning, and load
optimization framework presented in this paper.

1. METHODOLOGY

This study adopts an integrated, multi-stage
methodological framework that combines physics-based
multi-scale damage simulation, data-driven feature
extraction, machine learning—based damage inference,
and surrogate-assisted load optimization. The
methodology is designed to address the dual challenge of
accurately capturing complex damage mechanisms in
hybrid  composite  structures  while  enabling
computationally efficient decision-making suitable for
real-time  or  near-real-time  applications. By
systematically linking material-scale behavior to
structural response and operational control, the proposed
approach establishes a closed-loop workflow for
damage-aware structural performance optimization.

The overall methodology is structured into four
sequential stages: (i) multi-scale progressive damage
simulation, (ii) physics-consistent feature generation,
(iii) machine learning—based damage inference, and (iv)
load optimization using reduced-order surrogate models.
Each stage is modular, allowing adaptation to different
composite systems, sensing modalities, and operational
constraints.

Overview of the Proposed Workflow

The proposed workflow consists of the following stages:
Stage 1: Multi-Scale Simulation: Damage initiation
and evolution are computed at the ply and structural
levels using progressive failure modeling and cohesive
zone formulations.

Stage 2: Feature Generation: Physics-informed
features are extracted from simulated sensor signals and
finite element field responses.

Stage 3: Machine Learning Damage Inference:
Supervised learning models are trained to map extracted
features to damage classes and severity indicators,
including uncertainty estimation.

Stage 4: Load Optimization: A surrogate-assisted
optimization framework minimizes damage-driving
metrics while satisfying structural and operational
constraints.

Stage 1 — Multi-scale simulation Stage 2 — Feature

Stage 3 — Machine learning
damage _inference

Stage 4 — Load optimization
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Figure 1. Conceptual workflow integrating multi-scale simulation, machine learning, and load

optimization.

A. Multi-Scale Progressive Damage Simulation

Multi-scale simulation forms the physical
backbone of the proposed framework by capturing
damage mechanisms that evolve across length scales. In
hybrid composite laminates, damage initiation often
begins at the microscale and propagates through the
mesoscale before manifesting as global stiffness
degradation or structural instability. Accurately
representing this progression is essential for generating
reliable training data and physically meaningful damage
metrics.

A.1 Material System and Hybrid Laminate Definition
A representative hybrid composite panel is
modeled as a symmetric laminate composed of
alternating carbon/epoxy and glass/epoxy plies, for
example, a [C/G/G/C]s stacking sequence. This
configuration reflects common industrial practice, where
high-stiffness carbon plies are combined with more
damage-tolerant glass plies to balance performance, cost,
and durability. An adhesive or resin-rich interlaminar
region is explicitly modeled to capture delamination
behavior at material interfaces, which is particularly
critical in hybrid systems due to stiffness mismatch and
interfacial stress concentrations. Material properties for
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each ply are defined based on orthotropic elasticity, with
distinct longitudinal, transverse, and shear moduli. Ply
thickness, fiber orientation, and interface properties are
selected to reflect realistic aerospace or industrial
composite panels.

A.2 Constitutive Model for Intralaminar Damage

Each ply is modeled using an orthotropic elastic
constitutive law coupled with progressive damage
variables that degrade stiffness following damage
initiation. Damage onset is evaluated using established
failure indices for fiber tension, fiber compression,
matrix tension, and matrix compression. Hashin-type
failure criteria are employed as a baseline due to their
widespread validation and computational robustness in
unidirectional composite analysis [1]. Once a failure
index reaches unity, damage evolution laws reduce the
affected stiffness components gradually rather than
instantaneously, enabling simulation of progressive
stiffness degradation. This approach allows the model to

capture gradual load redistribution among plies and the
interaction between different damage modes, which is
essential for hybrid laminates under multi-axial loading.

A.3 Delamination Modeling Using Cohesive Zone
Elements

Interlaminar damage is modeled using cohesive
zone elements inserted between adjacent plies. These
elements follow mixed-mode traction—separation laws
that relate normal and shear tractions to corresponding
separations. Damage initiation is governed by a quadratic
stress criterion, while damage evolution follows an
energy-based fracture formulation. Mode mixity effects
are explicitly captured by combining opening (Mode I)
and sliding (Mode II) components, enabling realistic
simulation of delamination initiation and growth under
complex loading. Delamination area and propagation
rate are tracked throughout the simulation and later used
as key damage severity indicators.

initiation ~

Figure 2. Finite element model of hybrid laminate with intralaminar damage and cohesive interfaces.

Traction-separation
laws

Intralaminar damage
Matrix cracking) : / |

— '//;/Finite Element
— Model

A.4 Multi-Scale Linking from Micro/Meso to Ply
Properties

To account for inherent material variability,
microscale uncertainties such as fiber volume fraction,
void content, and matrix toughness are represented using
parametric distributions. These uncertainties perturb ply-
level elastic constants and fracture parameters,
generating a family of mesoscale laminate responses.
The resulting dataset captures variability in damage
initiation thresholds and propagation behavior, which is
essential for training machine learning models that
remain robust under real-world variability. This multi-
scale linkage enables the generation of physics-
consistent synthetic data without requiring prohibitively
expensive full microstructural simulations for every case

[2].

B. Feature Engineering for Damage Detection
Feature engineering serves as the bridge

between physics-based simulation and data-driven

damage inference. The objective is to extract features

that are sensitive to damage while remaining robust to
noise and operational variability.

B.1 Guided-Wave and Time—Frequency Features

Guided-wave signals, either simulated or
experimentally measured, are analyzed in both time and
frequency domains. Damage-sensitive features include
time-of-flight shifts caused by wave scattering, wave
packet energy ratios, frequency band energy
distributions obtained via short-time Fourier transform
or wavelet analysis, and correlation-based damage
indices.

These features have been shown to be effective
for detecting delamination and matrix cracking in
composite plates and form the basis for many benchmark
SHM datasets [3]. By using simulation-generated
signals, feature behavior can be systematically linked to
known damage states.
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B.2 Field-Based Features from Finite Element
Simulation

In addition to signal-based features, field-based
quantities extracted directly from finite element solutions
are used as physics-informed labels. These include
maximum interlaminar shear and normal stresses, strain
concentration factors, spatial damage index maps, and
delamination length or area evolution.

Such features provide interpretable measures of
damage severity and serve as ground truth targets for
regression models. They also enable validation of ML
predictions against physically meaningful metrics rather
than purely abstract labels.

C. Machine Learning—Based Damage Inference

Machine learning models are employed to infer
damage state and severity from the extracted features,
enabling rapid assessment without re-running high-
fidelity simulations.

C.1 Problem Formulation

Two supervised learning tasks are defined.
First, a multi-class classification task distinguishes
between healthy, matrix-cracked, delaminated, and
combined damage states. Second, a regression task
estimates continuous severity indicators such as
delamination area percentage, maximum failure index, or
global stiffness reduction.

This dual formulation allows the framework to
support both qualitative damage identification and
quantitative prognosis.

C.2 Model Selection and Uncertainty Estimation
Tree-based ensemble models such as random
forests and gradient boosting are used for tabular
engineered features due to their robustness and
interpretability. For raw waveform data, one-

Damage-minimized
load configuration

IV. DATA ANALYSIS AND RESULTS

This section presents the analysis and results
obtained from the proposed multi-scale simulation and
machine learning framework applied to hybrid

Surrogate
prediction

Metrics

Objective
evaluation

Optimal Load

Figure 3. Surrogate-assisted load optimization loop for damage mitigation.

dimensional convolutional neural networks are
employed to automatically learn discriminative temporal
patterns.

To address wuncertainty and improve
trustworthiness, ensemble learning and Monte Carlo
dropout techniques are used to estimate predictive
confidence. High uncertainty predictions can be flagged
for further inspection or higher-fidelity analysis, aligning
with best practices in SHM under uncertainty [4].

D. Load Optimization

The final stage of the methodology uses damage
predictions to actively optimize load distribution and
operational parameters.

D.1 Damage-Aware Objective Functions

A composite objective function is defined to
minimize damage-driving metrics, including peak
interlaminar shear stress, delamination area, and stiffness
degradation. Weighting factors allow prioritization
based on structural criticality or mission requirements.

D.2 Structural and Operational Constraints

Optimization is performed subject to
constraints on maximum deflection, allowable strains,
load equilibrium, and safety thresholds defined by failure
indices. These constraints ensure that optimized
solutions remain feasible and compliant with design
requirements.

D.3 Surrogate-Assisted Optimization Strategy

Because repeated finite element simulations are
computationally expensive, reduced-order surrogate
models approximate the relationship between loads,
damage state, and response metrics. Gaussian process or
neural network surrogates enable rapid evaluation during
optimization, making the approach suitable for online or
near-real-time applications [5].

Constraings Constraint

Optimizer
update

composite structures. The objective of the analysis is
twofold: first, to evaluate the effectiveness of the
machine learning models in detecting and quantifying
different damage modes; and second, to assess the
impact of load optimization on reducing damage-driving
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parameters such as interlaminar stresses, delamination
growth, and stiffness degradation. The results are derived
from a comprehensive dataset generated through
physics-based simulations under varying loading and
material conditions, ensuring consistency between the
training data and the underlying damage mechanisms.
The analysis is organized into three subsections. The first
subsection describes the dataset and simulation scenarios
used for evaluation. The second subsection presents the
performance of the damage detection models. The final
subsection evaluates the effectiveness of the load
optimization strategy and discusses its implications for
structural performance and durability.

A. Dataset Generation and Evaluation Setup

The dataset used in this study was generated
through multi-scale finite element simulations of a
hybrid composite laminate subjected to combined
bending and in-plane tensile loading. Multiple loading
scenarios were considered by varying load magnitude,
load direction ratio, and boundary conditions to represent
realistic operational variability. In addition, material
uncertainty was introduced by perturbing ply-level
elastic properties and interlaminar fracture parameters
within physically reasonable bounds. This approach
ensured that the dataset captured a wide range of damage

initiation and propagation behaviors. Each simulation
produced time-domain response signals, field-level
stress and strain distributions, and damage evolution
metrics. Based on the dominant damage mechanism
observed, each case was labeled as healthy, matrix
cracking, delamination, or combined damage. Severity
indicators such as delamination area percentage,
maximum failure index, and global stiffness reduction
were also recorded. The dataset was randomly divided
into training, validation, and test sets to evaluate
generalization performance.

B. Damage Detection and Severity Estimation
Performance

The trained machine learning models
demonstrated strong performance in identifying damage
states and estimating damage severity across the test
dataset. Models trained on engineered features extracted
from guided-wave and response signals achieved high
classification accuracy, indicating that the selected
features were sensitive to damage-related changes in
structural response. Deep learning models operating
directly on raw waveform data provided slightly
improved performance for early-stage damage detection,
particularly for small delaminations that produced subtle
signal perturbations.

Table 1: Damage detection performance on test dataset

Model Type Input Data Accuracy | F1-Score (Delamination) | RMSE (Severity
Estimation)

Random Forest Engineered features 0.93 0.92 0.084

Gradient Boosting Engineered features 0.94 0.93 0.079

1D CNN Raw waveforms 0.95 0.94 0.071

Ensemble (with uncertainty) Hybrid 0.94 0.94 0.073

The results indicate that combining physics-
informed feature engineering with machine learning
enables reliable discrimination between different
damage modes. The ensemble approach with uncertainty
estimation proved particularly effective in identifying
ambiguous cases, reducing the likelihood of false
confidence in borderline damage states. Overall, the
performance metrics demonstrate the feasibility of
simulation-driven ML models for damage detection in
hybrid composite structures.

C. Load Optimization Results and Structural
Performance Improvement

The effectiveness of the proposed load
optimization strategy was evaluated by comparing
damage metrics before and after optimization under
identical total load and service constraints. The
surrogate-assisted optimizer successfully redistributed
loads to reduce stress concentrations at critical ply
interfaces while maintaining acceptable global
deformation and strain levels.

Table 2: Comparison of damage metrics before and after load optimization

Damage Metric Baseline Loading | Optimized Loading | Improvement (%)
Peak interlaminar shear stress (normalized) 1.00 0.82 18% |
Delamination growth rate (normalized) 1.00 0.75 25% |
Global stiffness reduction 1.00 0.86 14% |

These results demonstrate that damage-aware
load optimization can significantly mitigate damage
progression without increasing overall structural
demand. In particular, the reduction in delamination

growth rate suggests improved fatigue life and damage
tolerance, which is critical for long-term operation of
composite structures.
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D. Graphical Representation of Results
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Figure 4. Comparison of damage metrics under baseline and optimized loading conditions.
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This graphical representation clearly illustrates
the benefit of the proposed optimization framework by
visually emphasizing the consistent reduction in damage-
driving parameters across all evaluated metrics. Such
visualization is particularly effective for communicating
results to both technical and non-technical stakeholders.

DISCUSSION OF RESULTS

The combined results confirm that integrating
multi-scale simulation with machine learning and
optimization provides measurable improvements in both
damage detection accuracy and structural performance.
The strong alignment between ML predictions and
physics-based damage metrics validates the use of
simulation-generated data for supervised learning.
Furthermore, the load optimization results highlight the
potential of transitioning from passive damage
monitoring to active damage mitigation strategies,
enabling longer service life and improved safety for
hybrid composite structures.

V. CONCLUSION

This paper presented a practical framework for
advanced damage detection and load optimization in
hybrid composite structures by integrating multi-scale
progressive damage simulation with machine learning
and surrogate-assisted  optimization. Multi-scale
simulations provide physics-consistent labels for training
ML models that can infer damage state and severity from
guided-wave and response features. The optimizer then
uses these predictions to reduce damage-driving stress
metrics and slow delamination growth while preserving
service constraints.

Limitations of this study relies on simulation-
driven labels, so real-world deployment requires
calibration with experimental SHM data and

compensation for environmental variability.
Additionally, cohesive and ply damage parameters can
be uncertain and must be identified carefully for reliable
digital-twin behavior. Future work will include transfer
learning from NASA/public guided-wave datasets to
field systems and adding probabilistic reliability
constraints to optimization. Another direction is
integrating image-based microstructure modeling to
update ply properties and uncertainty online.
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