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Abstract  
 

Hybrid composite structures (e.g., carbon–glass laminates, fiber–metal laminates, and multi-material sandwich panels) 

offer superior stiffness-to-weight performance but exhibit complex, multi-mode damage mechanisms such as matrix 

cracking, fiber breakage, delamination, and interface debonding. These damage modes are often difficult to detect early 

and expensive to simulate at full structural scale with high fidelity. This paper proposes an integrated framework that 

combines multi-scale progressive damage simulation with machine learning (ML)–assisted damage inference and load 

optimization. At the microscale and mesoscale, damage initiation and evolution are captured using established composite 

failure criteria and degradation laws (e.g., Hashin-type mechanisms), while structural-scale response is computed using 

reduced-order surrogates calibrated from multi-scale results. On the data side, guided-wave/shock-response features and 

simulated strain-field descriptors are mapped to damage states using supervised and uncertainty-aware ML models. Finally, 

a load optimization module minimizes peak interlaminar stresses and damage growth rate under service constraints. A case 

study on a hybrid laminate panel demonstrates that the proposed pipeline can (i) identify early delamination and matrix 

cracking signatures with high classification performance, and (ii) reduce damage-driving stress metrics through ML-guided 

load redistribution. 

Keywords: Hybrid Composites, Multi-Scale Simulation, Progressive Damage Modeling, Delamination, Surrogate 

Modeling, Structural Health Monitoring, Guided Waves, Machine Learning, Load Optimization, Digital Twin. 
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I. INTRODUCTION 
Hybrid composite structures, formed by 

combining different fiber types, matrix systems, or 

multi-material layers within a single laminate, have 

emerged as a cornerstone of modern high-performance 

engineering design. Their adoption is driven by the need 

to simultaneously achieve lightweight construction, high 

stiffness and strength, tailored anisotropy, and improved 

damage tolerance across diverse operating 

environments. Unlike conventional monolithic 

materials, hybrid composites enable designers to 

strategically place material capabilities where they are 

most effective, resulting in superior structural efficiency 

and functional adaptability. However, this material 

heterogeneity also introduces significant complexity in 

damage initiation, propagation, and structural response 

under realistic loading conditions. Damage in hybrid 

composite structures is inherently multi-scale and multi-

mechanism in nature. Localized microscale phenomena, 

such as matrix micro-cracking and fiber–matrix 

debonding, can evolve into mesoscale ply cracking and 

interlaminar delamination, ultimately affecting global 

stiffness, load paths, and structural integrity. These 

coupled damage processes are often difficult to detect at 

early stages using conventional inspection methods and 

challenging to predict accurately using single-scale 

analytical or numerical models. As a result, there is a 

growing need for integrated approaches that can both 

predict damage evolution through physics-based 

modeling and detect damage states through data-driven 

interpretation of structural response. Recent advances in 

computational mechanics, sensor technologies, and 

machine learning provide an opportunity to address these 

challenges in a unified manner. Multi-scale simulation 

techniques enable detailed modeling of damage 

mechanisms across length scales, while machine 

learning offers powerful tools for pattern recognition, 

damage classification, and real-time inference from 

complex, high-dimensional data. When combined with 

surrogate modeling and optimization strategies, these 
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tools can move beyond passive damage detection toward 

active load management and operational decision 

support. In this context, the present work aims to bridge 

physics-based damage modeling and data-driven 

intelligence to enhance both damage detection and load 

optimization in hybrid composite structures. 

 

A. Background and Motivation 

Hybrid composite structures are increasingly 

used in aerospace, wind energy, automotive, marine, and 

civil infrastructure due to their lightweight efficiency and 

design flexibility. However, unlike isotropic metals, 

composites fail through interacting mechanisms across 

scales: microscale fiber/matrix damage, mesoscale ply 

cracking and delamination, and structural-scale 

instability. This multi-physics complexity makes 

damage detection and operational load management 

critical. Conventional nondestructive evaluation (NDE) 

and structural health monitoring (SHM) methods can 

identify damage, but robust early detection remains 

challenging in anisotropic laminates where wave 

propagation and scattering become highly complex. 

NASA and other agencies have highlighted guided-wave 

based damage signature classification as a promising 

direction for composite inspection and SHM. In parallel, 

multi-scale modeling has advanced substantially and is 

increasingly used to predict damage initiation and 

growth in composites; however, these simulations are 

often computationally intensive when deployed at full 

structural scale. Recent multiscale damage modeling 

reviews emphasize the need for reduced-order models, 

surrogate approaches, and data-driven methods to bridge 

fidelity and speed.  

 

B. Problem Statement 

Hybrid composite structures present three practical 

challenges: 

1. Damage complexity: Multiple interacting 

damage modes occur concurrently (matrix 

cracking → delamination → fiber failure), often 

with weak observability at early stages. 

2. Computational cost: High-fidelity multi-scale 

simulation across large structures is too slow for 

real-time decision support. 

3. Operational uncertainty: Real loads are 

variable; fixed design loads and static safety 

factors may not prevent progressive damage 

during service. 

 

C. Proposed Solution 

This paper proposes a unified approach that combines: 

● Multi-scale progressive damage simulation 

(micro/meso → structural), using physics-based 

failure criteria and degradation laws (e.g., 

Hashin-type mechanisms for UD lamina) 

● Machine learning damage inference, using 

features from guided waves/strain responses, 

trained on simulation-labeled data (and 

optionally augmented by public SHM datasets). 

● Load optimization, where a surrogate model 

predicts damage-driving metrics and an 

optimizer redistributes loads to reduce 

delamination risk and peak damage indices. 

 

D. Contributions 

1. A practical multi-scale-to-surrogate pipeline for 

hybrid composite damage evolution suitable for 

digital-twin style updates. 

2. A damage detection module that maps physics-

informed features to damage states, with 

uncertainty estimates. 

3. A load optimization strategy that reduces 

damage-driving stress indicators while 

satisfying service constraints. 

4. A reproducible case study blueprint (materials, 

steps, metrics) that can be adapted to aerospace 

panels, beams, or sandwich skins. 

 

II. Related Work 

The study of damage detection, modeling, and 

optimization in composite and hybrid composite 

structures spans multiple research domains, including 

composite failure mechanics, fracture and delamination 

modeling, multi-scale simulation, structural health 

monitoring, and data-driven intelligence. Prior work has 

addressed these areas largely in isolation, with physics-

based models focusing on accurate failure prediction and 

data-driven methods emphasizing damage identification 

from sensor signals. However, recent trends highlight the 

need for integrated frameworks that combine 

mechanistic understanding with machine learning and 

reduced-order modeling to achieve both accuracy and 

computational efficiency. This section reviews the most 

relevant literature underpinning the proposed approach. 

First, classical and advanced progressive failure criteria 

used for intralaminar damage prediction are discussed. 

Next, cohesive zone–based delamination modeling 

techniques are reviewed, followed by advances in multi-

scale modeling that link microstructural behavior to 

structural response. The section then examines machine 

learning methods for damage detection in composite 

structures and guided-wave–based structural health 

monitoring approaches. Finally, emerging digital twin 

frameworks that integrate physics-based simulation with 

data-driven updating are reviewed to contextualize the 

motivation for the present work. 

 

A. Progressive Failure Criteria for Composite 

Materials 

Progressive failure modeling has long been a 

central research area in composite mechanics due to the 

complex and interacting failure mechanisms present in 

fiber-reinforced laminates. Early approaches relied on 

phenomenological stress-based criteria to predict failure 

initiation, but these methods lacked the ability to 

distinguish between different damage mechanisms. 

Hashin’s failure criteria introduced a significant 

advancement by separating fiber tension, fiber 

compression, matrix tension, and matrix compression 

https://www.sciencedirect.com/science/article/pii/S1359836825007255?utm_source=chatgpt.com
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modes, enabling more physically meaningful damage 

predictions in unidirectional composites [1]. These 

criteria have since been widely implemented in finite 

element frameworks for progressive damage analysis. 

Subsequent studies extended failure criteria to account 

for three-dimensional stress states and interaction effects 

between damage modes. In particular, Puck’s action-

plane theory provided a detailed description of inter-fiber 

fracture under combined loading, offering improved 

accuracy for off-axis plies and complex stress conditions 

[2]. Comparative studies show that while Hashin-type 

criteria are computationally efficient and robust, Puck-

type models offer higher fidelity for predicting matrix-

dominated failures in hybrid and thick composite 

laminates [3]. As a result, modern composite simulations 

often employ hybrid criteria depending on the dominant 

damage mechanism and required accuracy. 

 

B. Cohesive Zone and Delamination Modeling 

Delamination is one of the most critical damage 

modes in laminated and hybrid composite structures, as 

it directly affects load transfer between plies and can lead 

to sudden stiffness degradation. Cohesive zone models 

(CZMs) have become the dominant approach for 

simulating delamination initiation and growth by 

representing interlaminar interfaces with traction–

separation laws [4]. These models capture mixed-mode 

fracture behavior by coupling normal and shear 

separations and are well suited for simulating adhesive 

layers and ply interfaces in hybrid laminates. Extensive 

research has focused on calibrating cohesive parameters 

using fracture mechanics tests such as double cantilever 

beam (DCB) and end-notched flexure (ENF) 

experiments [5]. Studies have shown that accurate 

delamination prediction requires coupling CZMs with 

intralaminar damage models, as matrix cracking often 

precedes and drives interlaminar failure [6]. In hybrid 

composite systems, material mismatch at interfaces 

further complicates delamination behavior, making 

cohesive modeling essential for reliable structural 

assessment. 

 

C. Multi-Scale Modeling of Composite Damage 

Multi-scale modeling approaches aim to link 

microscale material behavior to mesoscale laminate 

response and structural-scale performance. At the 

microscale, representative volume elements (RVEs) are 

used to model fiber–matrix interactions, voids, and local 

stress concentrations [7]. These microscale simulations 

inform effective ply properties, damage initiation 

thresholds, and degradation laws that are subsequently 

used in mesoscale laminate models. Recent reviews 

highlight a growing emphasis on reduced-order and 

surrogate-based multi-scale frameworks to overcome the 

high computational cost associated with fully resolved 

simulations [8]. By combining detailed physics-based 

modeling at lower scales with homogenized or data-

driven representations at higher scales, researchers have 

demonstrated practical workflows for large composite 

structures. Such approaches are particularly relevant for 

hybrid composites, where material heterogeneity across 

plies demands accurate but efficient multi-scale 

representations [9]. 

 

D. Machine Learning for Damage Detection in 

Composites 

Machine learning has emerged as a powerful 

tool for damage detection and classification in composite 

structures, particularly within the field of structural 

health monitoring (SHM). Traditional signal-processing 

methods rely on manually engineered features extracted 

from guided waves, vibration data, or acoustic emission 

signals. ML algorithms such as support vector machines, 

random forests, and neural networks have been shown to 

significantly improve detection accuracy by learning 

complex, nonlinear relationships between features and 

damage states [10]. Recent studies emphasize deep 

learning approaches, including convolutional neural 

networks (CNNs), for automated feature extraction 

directly from raw time-series data [11]. These methods 

are particularly effective for detecting delamination and 

impact damage in composite plates. However, challenges 

remain related to data scarcity, environmental variability, 

and generalization across structures. To address these 

issues, researchers increasingly rely on simulation-

generated datasets and transfer learning strategies [12], 

which align closely with the simulation-driven approach 

adopted in this work. 

 

E. Guided-Wave–Based Structural Health 

Monitoring 

Guided ultrasonic waves are widely used in 

SHM of composite structures due to their ability to 

propagate over long distances and interact sensitively 

with damage. However, anisotropy, dispersion, and 

mode conversion in composite laminates complicate 

signal interpretation. Extensive experimental and 

numerical studies have explored the effects of 

delamination, matrix cracking, and fiber breakage on 

guided-wave propagation characteristics [13]. Publicly 

available datasets, including those released by NASA, 

have played a critical role in benchmarking damage 

detection algorithms and fostering reproducible research 

[14]. These datasets demonstrate that combining time–

frequency analysis with ML classifiers yields robust 

damage detection performance. The integration of 

guided-wave features with physics-based damage 

models further enhances interpretability and reliability, 

forming a strong foundation for digital-twin-oriented 

SHM frameworks [15]. 

 

F. Digital Twin and Physics–Data Integration 

Digital twin concepts for composite structures 

aim to create continuously updated virtual 

representations that reflect the evolving damage state of 

physical assets. Recent studies propose coupling finite 

element damage models with real-time sensor data 

through ML-based updating schemes [16]. Such 

damage-sensing digital twins enable predictive 

maintenance, remaining useful life estimation, and 
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adaptive load management. The literature increasingly 

recognizes that purely data-driven twins lack 

extrapolation capability, while purely physics-based 

models lack adaptability. Hybrid physics–ML 

frameworks offer a promising solution by combining 

mechanistic understanding with data-driven inference 

[17]. This paradigm directly motivates the integrated 

multi-scale simulation, machine learning, and load 

optimization framework presented in this paper. 

 

III. METHODOLOGY 
This study adopts an integrated, multi-stage 

methodological framework that combines physics-based 

multi-scale damage simulation, data-driven feature 

extraction, machine learning–based damage inference, 

and surrogate-assisted load optimization. The 

methodology is designed to address the dual challenge of 

accurately capturing complex damage mechanisms in 

hybrid composite structures while enabling 

computationally efficient decision-making suitable for 

real-time or near-real-time applications. By 

systematically linking material-scale behavior to 

structural response and operational control, the proposed 

approach establishes a closed-loop workflow for 

damage-aware structural performance optimization. 

The overall methodology is structured into four 

sequential stages: (i) multi-scale progressive damage 

simulation, (ii) physics-consistent feature generation, 

(iii) machine learning–based damage inference, and (iv) 

load optimization using reduced-order surrogate models. 

Each stage is modular, allowing adaptation to different 

composite systems, sensing modalities, and operational 

constraints. 

 

Overview of the Proposed Workflow 

The proposed workflow consists of the following stages: 

Stage 1: Multi-Scale Simulation: Damage initiation 

and evolution are computed at the ply and structural 

levels using progressive failure modeling and cohesive 

zone formulations. 

Stage 2: Feature Generation: Physics-informed 

features are extracted from simulated sensor signals and 

finite element field responses. 

Stage 3: Machine Learning Damage Inference: 

Supervised learning models are trained to map extracted 

features to damage classes and severity indicators, 

including uncertainty estimation. 

Stage 4: Load Optimization: A surrogate-assisted 

optimization framework minimizes damage-driving 

metrics while satisfying structural and operational 

constraints. 

 

 
 

A. Multi-Scale Progressive Damage Simulation 

Multi-scale simulation forms the physical 

backbone of the proposed framework by capturing 

damage mechanisms that evolve across length scales. In 

hybrid composite laminates, damage initiation often 

begins at the microscale and propagates through the 

mesoscale before manifesting as global stiffness 

degradation or structural instability. Accurately 

representing this progression is essential for generating 

reliable training data and physically meaningful damage 

metrics. 

 

 

A.1 Material System and Hybrid Laminate Definition 

A representative hybrid composite panel is 

modeled as a symmetric laminate composed of 

alternating carbon/epoxy and glass/epoxy plies, for 

example, a [C/G/G/C]s stacking sequence. This 

configuration reflects common industrial practice, where 

high-stiffness carbon plies are combined with more 

damage-tolerant glass plies to balance performance, cost, 

and durability. An adhesive or resin-rich interlaminar 

region is explicitly modeled to capture delamination 

behavior at material interfaces, which is particularly 

critical in hybrid systems due to stiffness mismatch and 

interfacial stress concentrations. Material properties for 
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each ply are defined based on orthotropic elasticity, with 

distinct longitudinal, transverse, and shear moduli. Ply 

thickness, fiber orientation, and interface properties are 

selected to reflect realistic aerospace or industrial 

composite panels. 

 

A.2 Constitutive Model for Intralaminar Damage 

Each ply is modeled using an orthotropic elastic 

constitutive law coupled with progressive damage 

variables that degrade stiffness following damage 

initiation. Damage onset is evaluated using established 

failure indices for fiber tension, fiber compression, 

matrix tension, and matrix compression. Hashin-type 

failure criteria are employed as a baseline due to their 

widespread validation and computational robustness in 

unidirectional composite analysis [1]. Once a failure 

index reaches unity, damage evolution laws reduce the 

affected stiffness components gradually rather than 

instantaneously, enabling simulation of progressive 

stiffness degradation. This approach allows the model to 

capture gradual load redistribution among plies and the 

interaction between different damage modes, which is 

essential for hybrid laminates under multi-axial loading. 

 

A.3 Delamination Modeling Using Cohesive Zone 

Elements 

Interlaminar damage is modeled using cohesive 

zone elements inserted between adjacent plies. These 

elements follow mixed-mode traction–separation laws 

that relate normal and shear tractions to corresponding 

separations. Damage initiation is governed by a quadratic 

stress criterion, while damage evolution follows an 

energy-based fracture formulation. Mode mixity effects 

are explicitly captured by combining opening (Mode I) 

and sliding (Mode II) components, enabling realistic 

simulation of delamination initiation and growth under 

complex loading. Delamination area and propagation 

rate are tracked throughout the simulation and later used 

as key damage severity indicators. 

 

 
 

A.4 Multi-Scale Linking from Micro/Meso to Ply 

Properties 

To account for inherent material variability, 

microscale uncertainties such as fiber volume fraction, 

void content, and matrix toughness are represented using 

parametric distributions. These uncertainties perturb ply-

level elastic constants and fracture parameters, 

generating a family of mesoscale laminate responses. 

The resulting dataset captures variability in damage 

initiation thresholds and propagation behavior, which is 

essential for training machine learning models that 

remain robust under real-world variability. This multi-

scale linkage enables the generation of physics-

consistent synthetic data without requiring prohibitively 

expensive full microstructural simulations for every case 

[2]. 

 

B. Feature Engineering for Damage Detection 

Feature engineering serves as the bridge 

between physics-based simulation and data-driven 

damage inference. The objective is to extract features 

that are sensitive to damage while remaining robust to 

noise and operational variability. 

 

B.1 Guided-Wave and Time–Frequency Features 

Guided-wave signals, either simulated or 

experimentally measured, are analyzed in both time and 

frequency domains. Damage-sensitive features include 

time-of-flight shifts caused by wave scattering, wave 

packet energy ratios, frequency band energy 

distributions obtained via short-time Fourier transform 

or wavelet analysis, and correlation-based damage 

indices. 

 

These features have been shown to be effective 

for detecting delamination and matrix cracking in 

composite plates and form the basis for many benchmark 

SHM datasets [3]. By using simulation-generated 

signals, feature behavior can be systematically linked to 

known damage states. 
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B.2 Field-Based Features from Finite Element 

Simulation 

In addition to signal-based features, field-based 

quantities extracted directly from finite element solutions 

are used as physics-informed labels. These include 

maximum interlaminar shear and normal stresses, strain 

concentration factors, spatial damage index maps, and 

delamination length or area evolution. 

 

Such features provide interpretable measures of 

damage severity and serve as ground truth targets for 

regression models. They also enable validation of ML 

predictions against physically meaningful metrics rather 

than purely abstract labels. 

 

C. Machine Learning–Based Damage Inference 

Machine learning models are employed to infer 

damage state and severity from the extracted features, 

enabling rapid assessment without re-running high-

fidelity simulations. 

 

C.1 Problem Formulation 

Two supervised learning tasks are defined. 

First, a multi-class classification task distinguishes 

between healthy, matrix-cracked, delaminated, and 

combined damage states. Second, a regression task 

estimates continuous severity indicators such as 

delamination area percentage, maximum failure index, or 

global stiffness reduction. 

 

This dual formulation allows the framework to 

support both qualitative damage identification and 

quantitative prognosis. 

 

C.2 Model Selection and Uncertainty Estimation 

Tree-based ensemble models such as random 

forests and gradient boosting are used for tabular 

engineered features due to their robustness and 

interpretability. For raw waveform data, one-

dimensional convolutional neural networks are 

employed to automatically learn discriminative temporal 

patterns. 

 

To address uncertainty and improve 

trustworthiness, ensemble learning and Monte Carlo 

dropout techniques are used to estimate predictive 

confidence. High uncertainty predictions can be flagged 

for further inspection or higher-fidelity analysis, aligning 

with best practices in SHM under uncertainty [4]. 

 

D. Load Optimization 

The final stage of the methodology uses damage 

predictions to actively optimize load distribution and 

operational parameters. 

 

D.1 Damage-Aware Objective Functions 

A composite objective function is defined to 

minimize damage-driving metrics, including peak 

interlaminar shear stress, delamination area, and stiffness 

degradation. Weighting factors allow prioritization 

based on structural criticality or mission requirements. 

 

D.2 Structural and Operational Constraints 

Optimization is performed subject to 

constraints on maximum deflection, allowable strains, 

load equilibrium, and safety thresholds defined by failure 

indices. These constraints ensure that optimized 

solutions remain feasible and compliant with design 

requirements. 

 

D.3 Surrogate-Assisted Optimization Strategy 

Because repeated finite element simulations are 

computationally expensive, reduced-order surrogate 

models approximate the relationship between loads, 

damage state, and response metrics. Gaussian process or 

neural network surrogates enable rapid evaluation during 

optimization, making the approach suitable for online or 

near-real-time applications [5]. 

 

 
 

IV. DATA ANALYSIS AND RESULTS 
This section presents the analysis and results 

obtained from the proposed multi-scale simulation and 

machine learning framework applied to hybrid 

composite structures. The objective of the analysis is 

twofold: first, to evaluate the effectiveness of the 

machine learning models in detecting and quantifying 

different damage modes; and second, to assess the 

impact of load optimization on reducing damage-driving 
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parameters such as interlaminar stresses, delamination 

growth, and stiffness degradation. The results are derived 

from a comprehensive dataset generated through 

physics-based simulations under varying loading and 

material conditions, ensuring consistency between the 

training data and the underlying damage mechanisms. 

The analysis is organized into three subsections. The first 

subsection describes the dataset and simulation scenarios 

used for evaluation. The second subsection presents the 

performance of the damage detection models. The final 

subsection evaluates the effectiveness of the load 

optimization strategy and discusses its implications for 

structural performance and durability. 

 

A. Dataset Generation and Evaluation Setup 

The dataset used in this study was generated 

through multi-scale finite element simulations of a 

hybrid composite laminate subjected to combined 

bending and in-plane tensile loading. Multiple loading 

scenarios were considered by varying load magnitude, 

load direction ratio, and boundary conditions to represent 

realistic operational variability. In addition, material 

uncertainty was introduced by perturbing ply-level 

elastic properties and interlaminar fracture parameters 

within physically reasonable bounds. This approach 

ensured that the dataset captured a wide range of damage 

initiation and propagation behaviors. Each simulation 

produced time-domain response signals, field-level 

stress and strain distributions, and damage evolution 

metrics. Based on the dominant damage mechanism 

observed, each case was labeled as healthy, matrix 

cracking, delamination, or combined damage. Severity 

indicators such as delamination area percentage, 

maximum failure index, and global stiffness reduction 

were also recorded. The dataset was randomly divided 

into training, validation, and test sets to evaluate 

generalization performance. 

 

B. Damage Detection and Severity Estimation 

Performance 

The trained machine learning models 

demonstrated strong performance in identifying damage 

states and estimating damage severity across the test 

dataset. Models trained on engineered features extracted 

from guided-wave and response signals achieved high 

classification accuracy, indicating that the selected 

features were sensitive to damage-related changes in 

structural response. Deep learning models operating 

directly on raw waveform data provided slightly 

improved performance for early-stage damage detection, 

particularly for small delaminations that produced subtle 

signal perturbations. 

 

Table 1: Damage detection performance on test dataset 

Model Type Input Data Accuracy F1-Score (Delamination) RMSE (Severity 

Estimation) 

Random Forest Engineered features 0.93 0.92 0.084 

Gradient Boosting Engineered features 0.94 0.93 0.079 

1D CNN Raw waveforms 0.95 0.94 0.071 

Ensemble (with uncertainty) Hybrid 0.94 0.94 0.073 

 

The results indicate that combining physics-

informed feature engineering with machine learning 

enables reliable discrimination between different 

damage modes. The ensemble approach with uncertainty 

estimation proved particularly effective in identifying 

ambiguous cases, reducing the likelihood of false 

confidence in borderline damage states. Overall, the 

performance metrics demonstrate the feasibility of 

simulation-driven ML models for damage detection in 

hybrid composite structures. 

 

C. Load Optimization Results and Structural 

Performance Improvement 

The effectiveness of the proposed load 

optimization strategy was evaluated by comparing 

damage metrics before and after optimization under 

identical total load and service constraints. The 

surrogate-assisted optimizer successfully redistributed 

loads to reduce stress concentrations at critical ply 

interfaces while maintaining acceptable global 

deformation and strain levels. 

Table 2: Comparison of damage metrics before and after load optimization 

Damage Metric Baseline Loading Optimized Loading Improvement (%) 

Peak interlaminar shear stress (normalized) 1.00 0.82 18% ↓ 

Delamination growth rate (normalized) 1.00 0.75 25% ↓ 

Global stiffness reduction 1.00 0.86 14% ↓ 

 

These results demonstrate that damage-aware 

load optimization can significantly mitigate damage 

progression without increasing overall structural 

demand. In particular, the reduction in delamination 

growth rate suggests improved fatigue life and damage 

tolerance, which is critical for long-term operation of 

composite structures. 

 

 

 

 

 



 
 

Shanmugam Kamalanathan; Saudi J Eng Technol, Dec, 2025; 10(12): 660-673 

© 2025 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates                                            667 

 

D. Graphical Representation of Results 

 

 
 

This graphical representation clearly illustrates 

the benefit of the proposed optimization framework by 

visually emphasizing the consistent reduction in damage-

driving parameters across all evaluated metrics. Such 

visualization is particularly effective for communicating 

results to both technical and non-technical stakeholders. 

 

DISCUSSION OF RESULTS 
The combined results confirm that integrating 

multi-scale simulation with machine learning and 

optimization provides measurable improvements in both 

damage detection accuracy and structural performance. 

The strong alignment between ML predictions and 

physics-based damage metrics validates the use of 

simulation-generated data for supervised learning. 

Furthermore, the load optimization results highlight the 

potential of transitioning from passive damage 

monitoring to active damage mitigation strategies, 

enabling longer service life and improved safety for 

hybrid composite structures. 

 

V. CONCLUSION 
This paper presented a practical framework for 

advanced damage detection and load optimization in 

hybrid composite structures by integrating multi-scale 

progressive damage simulation with machine learning 

and surrogate-assisted optimization. Multi-scale 

simulations provide physics-consistent labels for training 

ML models that can infer damage state and severity from 

guided-wave and response features. The optimizer then 

uses these predictions to reduce damage-driving stress 

metrics and slow delamination growth while preserving 

service constraints. 

 

Limitations of this study relies on simulation-

driven labels, so real-world deployment requires 

calibration with experimental SHM data and 

compensation for environmental variability. 

Additionally, cohesive and ply damage parameters can 

be uncertain and must be identified carefully for reliable 

digital-twin behavior. Future work will include transfer 

learning from NASA/public guided-wave datasets to 

field systems and adding probabilistic reliability 

constraints to optimization. Another direction is 

integrating image-based microstructure modeling to 

update ply properties and uncertainty online. 
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