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Abstract  
 

In this paper, a refined plate theory (Alternative II theory) is presented for the three-dimensional bending analysis of an 

Isotropic thick plate. The theory has similarity to the first order shear deformation theory but requires no shear correction 

factors. The kinematics equations were developed based on the Alternative II Refined plate theory. Thereafter, using a 

complete three-dimensional constitutive relation, the total potential energy was developed. A governing equation and two 

compatibility equations were obtained by the variation of the total potential energy with respect to displacement and 

rotations respectively. Solving the governing and compatibility equations, a polynomial displacement function was 

obtained. The stiffness coefficients were then obtained using the displacement function. Thereafter, the equations for the 

in-plane normal and shear stresses, transverse normal and shear stresses as well as the lateral displacement were developed 

using the stiffness coefficients and the displacement function. Numerical values of the lateral displacement parameters 

were determined for a rectangular plate of aspect ratio 2.0, 1.0 and 0.5 for span to thickness ratios of 20, 10 and 7.14286. 

Also, numerical values of the lateral displacement and stresses were determined for a square plate for span to thickness 

ratios of 4, 10, 100 and 1000. The results from this work were compared with the work of previous researchers using simple 

percentage difference. It was observed that refined plate theories overestimate the lateral displacement of a plate. Hence, 

three-dimensional analysis is recommended for thick plate analysis. 
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1.0 INTRODUCTION 
The analysis of plates has been in existence for 

decades. It remains an important subject of interest 

because of the various uses of plates in engineering. Such 

uses are seen in the construction of structures such as 

wall panels, bridges, building floors, roofs, offshore 

platforms, aircraft, vehicles, ships among others [1]. 

Researchers have carried out various analysis of plates 

using different theories in the past. One of the earliest 

theories used in plate analysis is the classical plate 

theory. This theory assumes transverse inextensibility of 

the plate, hence neglecting strain along the thickness of 

the plate. Also, the classical plate theory neglects 

transverse shear stresses in a plate. This is done by the 

assumption that a vertical section of the plate remains 

normal to the middle surface even after deformation [2, 

3]. It is obvious that the classical plate theory idealizes a 

plate as a two-dimensional material. Such 

approximations are only introduced to facilitate analysis, 

but it is known that significant shear tresses occur when 

the span to thickness ratio of the plate becomes relatively 

low [4]. Such plates that have a low span to thickness 

ratio (less than 20) are known as thick plates. To take 

care of the shear deformation that occurs in thick plates, 

Reissner and Mindlin introduced the first order shear 

deformation theory. The first order shear deformation 

theory takes account shear deformation but assumes a 

constant shear stress across the thickness of the plate [5]. 

This poses another problem as it defies the shear free 

surface condition. Hence, shear correction factors are 

required to provide a correct relationship between shear 

strain and stress across the thickness of the plate [6, 7]. 

These shear correction factors also pose challenges as 

they are dependent on geometry, loading and support 

conditions. To solve the problems associated with the 

classical plate theory and the first order shear 

deformation theory, higher order theories are developed 

[8]. These higher order theories take into consideration 

the shear deformation by using a shear deformation 

profile that ensures distribution of shear stress across the 
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thickness of the plate and ensuring zero traction at the 

surface [9]. It should be noted that even the first order 

and higher order shear deformation theories solve plate 

as partial three-dimensional material because of the 

assumption of transverse inextensibility. This results in 

the stress along the thickness of the plate being assumed 

to be zero. Therefore, only five stress components are 

solved. Even though results obtained from these 

approximations are acceptable for many practical 

purposes, they do not give the accurate values of the 

stresses acting on the plate as well as the displacements 

under applied loads. It is important to analyze a plate 

using three-dimensional analysis to get the full response 

of the plate under loads since it is a three-dimensional 

body. Most works on three-dimensional analysis are for 

functionally graded (or sandwich) plates [10-14]. 

However [15], carried out analytical three-dimensional 

bending analysis of simply supported isotropic 

rectangular plate using a third order shear deformation 

theory while [16], investigated the three-dimensional 

stability analysis of plate using a direct variational 

energy method. The present study therefore presents an 

analytical approach to the three-dimensional bending 

analysis of homogeneous, rectangular, isotropic thick 

plate using a modified first order shear deformation 

theory which requires no shear correction factor yet 

satisfies shear free surface condition. 

 

2.0 Refined Plate Theory: The refined plate theory is 

formulated as shown below: 

 

2.1 Basic Assumptions 

Consider a rectangular plate of total thickness, 

h, as shown in Figure 1a. The deformed section of the 

plate is as shown in Figure 1b. The plate is made of 

isotropic material. The assumptions of the present theory 

are as follows: 

 

 
Figure 1: Geometry and deformed section of rectangular plate 

 

i. The plate material is flat before loading.  

ii. The deflection (w) of the middle in-plane 

surface of the plate is small when compared 

with the thickness of the plate. That is w/t < 0.3. 

iii. The middle surface of the plate never stretches 

nor compresses before, during or after bending. 

iv. A straight and flat x-z or y-z section, which is 

normal to middle x-y plane before bending shall 

remain straight and flat but not normal to the 

middle x-y surface after bending. 

v. The actual transverse shear stresses, that is, x-z 

and y-z shear stresses distributed across the 

thickness of the plate are the product of nominal 

x-z and y-z shear stresses and shear stress shape 

profile, g(z). That is: 

τxza = τxz g(z)  
τyza = τyz g(z) 

 

From assumption (iii), it follows that the in-

plane displacements u and v consist of only bending, and 

shear components. This is as shown on Equations (1) and 

(2). 

u = uc + us                                     (1)  
v = vc + vs                                      (2) 

 

The bending components uc  and vc  are 

assumed to be similar to the displacements given by the 

classical plate theory, except for the removal of the 

negative sign. Therefore, the expression for uc  and vc 

can be given as: 

uc =  z 
∂w

∂x
 ,  vc =  z 

∂w

∂y
                (3) 

 

From assumption (iv), the shear components us 

and vs are assumed to have a linear shear deformation 

profile in the displacement field but by multiplying the 

transverse shear stresses with a shear stress profile as 

given in assumption (v) ensures that shear stresses are 

zero at the top and bottom faces of the plate. Hence, no 

shear correction factor is required. Consequently, the 

expression for us and vs can be given as: 

us =  zϕ𝑥  ,  vs =  zϕ𝑦                      (4) 
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2.2 Kinematics 

If Equations (3) and (4) are substituted into Equations (1) and (2), the displacements are given. 

Hence, the kinematic relations are as shown on Equations (5) to (10).  

εx =  
∂u

∂x
= 𝑧 (

∂2𝑤

∂𝑥2
+

∂ϕ𝑥

∂x
)                                  (5) 

εy =  
∂v

∂y
= 𝑧 (

∂2𝑤

∂𝑦2
+

∂ϕ𝑦

∂y
)                                  (6) 

εz =  
∂w

∂z
                                                                     (7) 

γxy =  
∂u

∂y
+

∂v

∂x
= 𝑧 (2

∂2𝑤

∂x∂y
+

∂ϕ𝑥

∂y
+ 

∂ϕ𝑦

∂x
) (8) 

γxz =  
∂u

∂z
+

∂w

∂x
= 2

∂w

∂x
+ ϕ𝑥                              (9) 

γyz =  
∂v

∂z
+

∂w

∂y
= 2

∂w

∂y
+ ϕ𝑦                             (10) 

 

2.3 Constitutive Relations 

The constitutive relation for a three-dimensional isotropic material is used in this work. This is as given in Equation (11). 

[
 
 
 
 
 
σ𝑥

σ𝑦

σ𝑧
τ𝑥𝑦

τ𝑥𝑧

τ𝑦𝑧]
 
 
 
 
 

= 𝐸∗  

[
 
 
 
 
 
 
(1 − μ) μ μ 0 0 0

μ (1 − μ) μ 0 0 0

μ μ (1 − μ) 0 0 0

0 0 0 (0.5 − μ) 0 0

0 0 0 0 (0.5 − μ) 0

0 0 0 0 0 (0.5 − μ)]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
ε𝑥

ε𝑦

ε𝑧

γ𝑥𝑦

γ𝑥𝑧

γ𝑦𝑧]
 
 
 
 
 
 
 
 

                    (11) 

Where: 

𝐸∗ = 
E

(1 + μ)(1 − 2μ)
                (12) 

 

E and µ are the young modulus of elasticity and the Poisson ratio respectively. 

By substituting Equations (5) to (10) into Equation (11), The Equation of stresses can therefore be written as: 

σx = 𝐸∗ [𝑧(1 − μ) (
∂2𝑤

∂𝑥2
+

∂ϕ𝑥

∂x
) +  𝑧μ (

∂2𝑤

∂𝑦2
+

∂ϕ𝑦

∂y
) +  μ

∂w

∂z
]            (13) 

σy = 𝐸∗ [𝑧μ (
∂2𝑤

∂𝑥2
+

∂ϕ𝑥

∂x
) + 𝑧(1 − μ) (

∂2𝑤

∂𝑦2
+

∂ϕ𝑦

∂y
) + μ

∂w

∂z
]             (14) 

σz = 𝐸∗ [𝑧μ (
∂2𝑤

∂𝑥2
+

∂ϕ𝑥

∂x
) + 𝑧μ (

∂2𝑤

∂𝑦2
+

∂ϕ𝑦

∂y
) + (1 − μ)

∂w

∂z
]              (15) 

τ𝑥𝑦 = 𝐸∗ [𝑧(0.5 − μ) (2
∂2𝑤

∂x∂y
+

∂ϕ𝑥

∂y
+ 

∂ϕ𝑦

∂x
)]                                        (16) 

τ𝑥𝑧 = 𝐸∗ [(0.5 − μ) (2
∂w

∂x
+ ϕ𝑥)]                         (17) 

τ𝑦𝑧 =  E0 [(0.5 − μ) (2
∂w

∂y
+ ϕ𝑦)]                         (18) 

 

2.4 Total Potential Energy 

The internal work is as shown in Equation (19). 

U =  
1

2
∫ ∫ ∫ (σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz )

0.5𝑧

−0.5𝑧

𝑏

0

𝑎

0

∂x∂y∂z            (19) 

 

If Equations (5) to (10) and Equations (13) to (18) are substituted into Equation (19) and simplified, the internal work is 

given as: 
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U = 
𝐸∗

2
∫ ∫ ∫ (𝑧2(1 − μ) (

∂2𝑤

∂𝑥2
)

2

+ 2𝑧2(1 − μ)
∂2𝑤

∂𝑥2
.
∂ϕ𝑥

∂x
+  2𝑧2μ

∂2𝑤

∂𝑥2
.
∂2𝑤

∂𝑦2
+ 2𝑧2μ

∂2𝑤

∂𝑥2
.
∂ϕ𝑦

∂y
+  2𝑧μ

∂2𝑤

∂𝑥2
.
∂w

∂z

0.5𝑧

−0.5𝑧

𝑏

0

𝑎

0

+ 𝑧2(1 − μ) (
∂ϕ𝑥

∂x
)
2

+  2𝑧2μ
∂2𝑤

∂𝑦2
.
∂ϕ𝑥

∂x
+ 2𝑧2μ

∂ϕ𝑥

∂x
.
∂ϕ𝑦

∂y
+  2𝑧μ

∂ϕ𝑥

∂x
.
∂w

∂z
+ 𝑧2(1 − μ) (

∂2𝑤

∂𝑦2
)

2

+ 2𝑧2(1 − μ)
∂2𝑤

∂𝑦2
.
∂ϕ𝑦

∂y
+ 2𝑧μ

∂2𝑤

∂𝑦2
.
∂w

∂z
+ 𝑧2(1 − μ)(

∂ϕ𝑦

∂y
)

2

+ 2𝑧μ
∂ϕ𝑦

∂y
.
∂w

∂z
+ (1 − μ) (

∂w

∂z
)

2

+ 4𝑧2(0.5 − μ) (
∂2𝑤

∂x∂y
)

2

+ 4𝑧2(0.5 − μ)
∂ϕ𝑥

∂y
.
∂2𝑤

∂x∂y
+ 4𝑧2(0.5 − μ) 

∂ϕ𝑦

∂x
.
∂2𝑤

∂x∂y
+ 𝑧2(0.5 − μ)(

∂ϕ𝑥

∂y
)

2

+ 2𝑧2(0.5 − μ)
∂ϕ𝑥

∂y
.
∂ϕ𝑦

∂x
+ 𝑧2(0.5 − μ) (

∂ϕ𝑦

∂x
)

2

+ 4(0.5 − μ)(
∂w

∂x
)

2

+ 4(0.5 − μ)
∂w

∂x
. ϕ𝑥

+ (0.5 − μ)ϕ𝑥
2 + 4(0.5 − μ)(

∂w

∂y
)

2

+  4(0.5 − μ)
∂w

∂y
.ϕ𝑦 + (0.5 − μ)ϕ𝑦

2)∂x∂y ∂z             (20) 

 

Substituting x = aR, y = bQ, z = tS and ∝ = b/a into Equation (20) gives the average strain energy as given in Equation 

(21). 

U = 
𝑎𝑏𝐸∗𝑡

2
𝑡2 ∫ ∫ ∫ (𝑆2(1 − μ)

1

𝑎4
(
∂2𝑤

∂𝑅2
)

2

+ 2𝑆2(1 − μ)
1

𝑎3

∂2𝑤

∂𝑅2
.
∂ϕ𝑥

∂R
+  2𝑆2μ

1

𝑎4 ∝2

∂2𝑤

∂𝑅2
.
∂2𝑤

∂𝑄2

0.5

−0.5

1

0

1

0

+ 2𝑆2μ
1

𝑎3 ∝

∂2𝑤

∂𝑅2
.
∂ϕ𝑦

∂Q
+  2

𝑆

𝑡2
μ

1

𝑎2

∂2𝑤

∂𝑅2
.
∂w

∂S
+ 𝑆2(1 − μ)

1

𝑎2
(
∂ϕ𝑥

∂R
)

2

+  2𝑆2μ
1

𝑎3 ∝2

∂2𝑤

∂𝑄2
.
∂ϕ𝑥

∂R

+ 2𝑆2μ
1

𝑎2 ∝

∂ϕ𝑥

∂R
.
∂ϕ𝑦

∂Q
+  2

𝑆

𝑡2
μ

1

𝑎

∂ϕ𝑥

∂R
.
∂w

∂S
+ 𝑆2(1 − μ)

1

𝑎4 ∝4
(
∂2𝑤

∂𝑄2
)

2

+ 2𝑆2(1 − μ)
1

𝑎3 ∝3

∂2𝑤

∂𝑄2
.
∂ϕ𝑦

∂Q

+ 2
𝑆

𝑡2
μ

1

𝑎2 ∝2

∂2𝑤

∂𝑄2
.
∂w

∂S
+ 𝑆2(1 − μ)

1

𝑎2 ∝2
(
∂ϕ𝑦

∂Q
)

2

+ 2
𝑆

𝑡2
μ

1

𝑎 ∝

∂ϕ𝑦

∂Q
.
∂w

∂S
+

(1 − μ)

𝑡4
(
∂w

∂S
)

2

+ 4𝑆2(0.5 − μ)
1

𝑎4 ∝2
(

∂2𝑤

∂R∂Q
)

2

+ 4𝑆2(0.5 − μ)
1

𝑎3 ∝2

∂ϕ𝑥

∂Q
.

∂2𝑤

∂R∂Q
+ 4𝑆2(0.5 − μ)

1

𝑎3 ∝
 
∂ϕ𝑦

∂R
.

∂2𝑤

∂R∂Q

+ 𝑆2(0.5 − μ)
1

𝑎2 ∝2
(
∂ϕ𝑥

∂Q
)

2

+ 2𝑆2(0.5 − μ)
1

𝑎2 ∝

∂ϕ𝑥

∂Q
.
∂ϕ𝑦

∂R
+ 𝑆2(0.5 − μ)

1

𝑎2
 (

∂ϕ𝑦

∂R
)

2

+ 4(0.5 − μ)
1

𝑎2𝑡2
(
∂w

∂R
)

2

+ 4(0.5 − μ)
1

𝑎𝑡2

∂w

∂R
. ϕ𝑥 +

(0.5 − μ)

𝑡2
ϕ𝑥

2 + 4(0.5 − μ)
1

𝑎2 ∝2 𝑡2
(
∂w

∂Q
)
2

+  4(0.5 − μ)
1

𝑎 ∝ 𝑡2

∂w

∂Q
. ϕ𝑦 + 

(0.5 − μ)

𝑡2
ϕ𝑦

2)∂R∂Q∂S                         (21) 

 

Evaluating the integrals with respect to S in Equation (21), gives the internal work as:  

U =
𝑎𝑏D0

2𝑎4
 ∫ ∫ ((1 − μ) (

∂2𝑤

∂𝑅2
)

2

+ 2(1 − μ)𝑎
∂2𝑤

∂𝑅2
.
∂ϕ𝑥

∂R
+  2μ

1

∝2

∂2𝑤

∂𝑅2
.
∂2𝑤

∂𝑄2
+ 2μ

𝑎

∝

∂2𝑤

∂𝑅2
.
∂ϕ𝑦

∂Q
+ (1 − μ)𝑎2 (

∂ϕ𝑥

∂R
)

21

0

1

0

+  2μ
𝑎

∝2

∂2𝑤

∂𝑄2
.
∂ϕ𝑥

∂R
+ 2μ

𝑎2

∝

∂ϕ𝑥

∂R
.
∂ϕ𝑦

∂Q
+ (1 − μ)

1

∝4
(
∂2𝑤

∂𝑄2
)

2

+ 2(1 − μ)
𝑎

∝3

∂2𝑤

∂𝑄2
.
∂ϕ𝑦

∂Q

+ (1 − μ)
𝑎2

 ∝2
(
∂ϕ𝑦

∂Q
)

2

+ 12(1 − μ)
𝑎4

𝑡4
(
∂w

∂S
)
2

+ 4(0.5 − μ)
1

 ∝2
(

∂2𝑤

∂R∂Q
)

2

+ 4(0.5 − μ)
𝑎

 ∝2

∂ϕ𝑥

∂Q
.

∂2𝑤

∂R∂Q

+ 4(0.5 − μ)
𝑎

∝
 
∂ϕ𝑦

∂R
.

∂2𝑤

∂R∂Q
+ (0.5 − μ)

𝑎2

 ∝2
(
∂ϕ𝑥

∂Q
)

2

+ 2(0.5 − μ)
𝑎2

∝

∂ϕ𝑥

∂Q
.
∂ϕ𝑦

∂R
+ (0.5 − μ)𝑎2  (

∂ϕ𝑦

∂R
)

2

+ 48(0.5 − μ)
𝑎2

𝑡2
(
∂w

∂R
)

2

+ 48(0.5 − μ)
𝑎3

𝑡2

∂w

∂R
. ϕ𝑥 + 12(0.5 − μ)

𝑎4

𝑡2
ϕ𝑥

2 + 48(0.5 − μ)
𝑎2

 ∝2 𝑡2
(
∂w

∂Q
)

2

+  48(0.5 − μ)
𝑎3

∝ 𝑡2

∂w

∂Q
.ϕ𝑦 +  12(0.5 − μ)

𝑎4

𝑡2
ϕ𝑦

2)∂R∂Q               (22)  

where D0 is given in Equations (23) 

 D0 =  
𝐸𝑡3 

12(1 + μ)(1 − 2μ)
                                                 (23) 

The external work is expressed in the non-dimensional form as: 
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V =  ab∫ ∫ [qw]
1

0

1

0

∂R∂Q                             (24) 

 

Combining Equations (22) and (24) gives the total potential energy as: 

П =
𝑎𝑏D0

2𝑎4
 ∫ ∫ ((1 − μ) (

∂2𝑤

∂𝑅2
)

2

+ 2(1 − μ)𝑎
∂2𝑤

∂𝑅2
.
∂ϕ𝑥

∂R
+  2μ

1

∝2

∂2𝑤

∂𝑅2
.
∂2𝑤

∂𝑄2
+ 2μ

𝑎

∝

∂2𝑤

∂𝑅2
.
∂ϕ𝑦

∂Q
+ (1 − μ)𝑎2 (

∂ϕ𝑥

∂R
)

21

0

1

0

+  2μ
𝑎

∝2

∂2𝑤

∂𝑄2
.
∂ϕ𝑥

∂R
+ 2μ

𝑎2

∝

∂ϕ𝑥

∂R
.
∂ϕ𝑦

∂Q
+ (1 − μ)

1

∝4
(
∂2𝑤

∂𝑄2
)

2

+ 2(1 − μ)
𝑎

∝3

∂2𝑤

∂𝑄2
.
∂ϕ𝑦

∂Q

+ (1 − μ)
𝑎2

 ∝2
(
∂ϕ𝑦

∂Q
)

2

+ 12(1 − μ)
𝑎4

𝑡4
(
∂w

∂S
)

2

+ 4(0.5 − μ)
1

 ∝2
(

∂2𝑤

∂R ∂Q
)

2

+ 4(0.5 − μ)
𝑎

 ∝2

∂ϕ𝑥

∂Q
.

∂2𝑤

∂R∂Q
+ 4(0.5 − μ)

𝑎

∝
 
∂ϕ𝑦

∂R
.

∂2𝑤

∂R∂Q
+ (0.5 − μ)

𝑎2

 ∝2
(
∂ϕ𝑥

∂Q
)

2

+ 2(0.5 − μ)
𝑎2

∝

∂ϕ𝑥

∂Q
.
∂ϕ𝑦

∂R
+ (0.5 − μ)𝑎2  (

∂ϕ𝑦

∂R
)

2

+ 48(0.5 − μ)
𝑎2

𝑡2
(
∂w

∂R
)

2

+ 48(0.5 − μ)
𝑎3

𝑡2

∂w

∂R
.ϕ𝑥

+ 12(0.5 − μ)
𝑎4

𝑡2
ϕ𝑥

2 + 48(0.5 − μ)
𝑎2

 ∝2 𝑡2
(
∂w

∂Q
)

2

+  48(0.5 − μ)
𝑎3

∝ 𝑡2

∂w

∂Q
.ϕ𝑦

+  12(0.5 − μ)
𝑎4

𝑡2
ϕ𝑦

2 − 
2q𝑎4w

D0

)∂R∂Q                     (25)  

 

2.5 Compatibility Equations and the Governing Equation 

Carrying out minimization of the total potential energy functional with respect to the rotational displacements 

gives compatibility equations. Equation (26) and (27) are obtained when Equation (25) is minimized with respect to Φx 

and Φy respectively. 

2(1 − μ)𝑎
∂3𝑤

∂𝑅3
+ 2(1 − μ)𝑎2

∂2ϕ𝑥

∂𝑅2
+  2μ

𝑎

∝2

∂3𝑤

∂R∂𝑄2
+ 2μ

𝑎2

∝

∂2ϕ𝑦

∂R∂Q
+ 4(0.5 − μ)

𝑎

 ∝2

∂3𝑤

∂R∂Q2
+ 2(0.5 − μ)

𝑎2

 ∝2

∂2ϕ𝑥

∂𝑄2

+ 2(0.5 − μ)
𝑎2

∝

∂2ϕ𝑦

∂R ∂Q
+ 48(0.5 − μ)

𝑎3

𝑡2

∂w

∂R
+ 24(0.5 − μ)

𝑎4

𝑡2
ϕ𝑥 = 0                 (26) 

2μ
𝑎

∝

∂3𝑤

∂𝑅2 ∂Q
+ 2μ

𝑎2

∝

∂2ϕ𝑥

∂R∂Q
+ 2(1 − μ)

𝑎

∝3

∂3𝑤

∂𝑄3
+ 2(1 − μ)

𝑎2

 ∝2

∂2ϕ𝑦

∂𝑄2
+ 4(0.5 − μ)

𝑎

∝
 

∂3𝑤

∂R2 ∂Q
+ 2(0.5 − μ)

𝑎2

∝

∂2ϕ𝑥

∂R ∂Q

+ 2(0.5 − μ)𝑎2
∂2ϕ𝑦

∂𝑅2
+  48(0.5 − μ)

𝑎3

∝ 𝑡2

∂w

∂Q
+  24(0.5 − μ)

𝑎4

𝑡2
ϕ𝑦 = 0             (27) 

Solving Equations (26) and (27) gives: 

Փ𝑥 =
C𝑅

𝑎

∂w

∂R
                            (28) 

Փ𝑦 =
C𝑄

𝑎 ∝
.
∂w

∂Q
                        (29) 

Where CR and CQ are constants. 

Minimizing Equation (25) with respect to deflection, w, gives the governing equation as follows. 

(1 − μ)
∂4𝑤

∂𝑅4
+ (1 − μ)𝑎

∂3ϕ𝑥

∂𝑅3
+  2μ

1

∝2

∂4𝑤

∂𝑅2 ∂𝑄2
+ μ

𝑎

∝

∂3ϕ𝑦

∂𝑅2 ∂Q
+  μ

𝑎

∝2

∂3ϕ𝑥

∂R∂𝑄2
+ (1 − μ)

1

∝4

∂4𝑤

∂𝑄4
+ (1 − μ)

𝑎

∝3

∂3ϕ𝑦

∂𝑄3

+ 12(1 − μ)
𝑎4

𝑡4

∂2w

∂S2
+ 4(0.5 − μ)

1

 ∝2

∂4𝑤

∂R2 ∂Q2
+ 2(0.5 − μ)

𝑎

 ∝2

∂3ϕ𝑥

∂R ∂Q2
+ 2(0.5 − μ)

𝑎

∝
 
∂3ϕ𝑦

∂R2 ∂Q

+ 48(0.5 − μ)
𝑎2

𝑡2

∂2w

∂R2
+ 24(0.5 − μ)

𝑎3

𝑡2

∂ϕ𝑥

∂R
+ 48(0.5 − μ)

𝑎2

 ∝2 𝑡2

∂2w

∂Q2
+  24(0.5 − μ)

𝑎3

∝ 𝑡2

∂ϕ𝑦

∂Q

− 
q𝑎4

D0
= 0                    (30) 

If Equations (28) and (29) are substituted into Equation (30) and simplified, it gives: 
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(1 − μ)(1 + C𝑅)
∂4𝑤

∂𝑅4
+ (

2μ + μC𝑄 + μC𝑅 + 4(0.5 − μ) + 2(0.5 − μ)C𝑅 +  2(0.5 − μ)C𝑄

∝2
)

∂4𝑤

∂R2 ∂Q2

+
(1 − μ)(1 + C𝑄)

∝4

∂4𝑤

∂𝑄4
+ 24(0.5 − μ)(2 + C𝑅)

𝑎2

𝑡2

∂2𝑤

∂R2
+

24(0.5 − μ)(2 + C𝑄)

 ∝2

𝑎2

𝑡2

∂2𝑤

∂Q2
 

+ 12(1 − μ)
𝑎4

𝑡4

∂2w

∂S2
 −  

q𝑎4

D0
= 0                    (31) 

 

Equation (31) can be arranged as shown on Equation (32), 

(
∂4𝑤

∂𝑅4
+ 

𝛻1

∝2

∂4𝑤

∂R2 ∂Q2
+ 

𝛻2

∝4
 
∂4𝑤

∂𝑄4
 −  

q𝑎4

D0(1 − μ)(1 + C𝑅)
 ) + (𝛻3

∂2𝑤

∂R2
+

𝛻4

∝2

∂2𝑤

∂Q2
) + (𝛻5

∂2w

∂S2
) = 0            (32) 

Where: 𝛻1, 𝛻2, 𝛻3, and 𝛻5 are constants. 
 

It can be seen from Equation (32) that one of the valid solutions is that each term in the brackets must be equal to zero. 

That is: 

∂4𝑤

∂𝑅4
+ 

𝛻1

∝2

∂4𝑤

∂R2 ∂Q2
+ 

𝛻2

∝4
 
∂4𝑤

∂𝑄4
 −  

q𝑎4

D0(1 − μ)(1 + C𝑅)
 = 0              (33) 

𝛻3

∂2𝑤

∂R2
+

𝛻4

∝2

∂2𝑤

∂Q2
 = 0                  (34) 

𝛻5

∂2w

∂S2
 = 0                                     (35) 

 

Equation (35) can be written as 

w0. 𝛻5

∂2ws

∂𝑆2
= 0                             (36) 

Where w0 = wxwy represents the in-plane component of the deflection and ws represents the out-plane component of the 

deflection. For non-trivial solution of Equation (36), then: 

∂2ws

∂𝑆2
= 0                       (37) 

From Equation (37), 
𝜕ws

𝜕𝑆
= 𝑘1                       (38) 

Therefore: 

w𝑆 = 𝑘0 + 𝑘1S             (39) 
 

Since at the middle surface there is no strain, then, it can be deduced from Equation (38) that 𝑘1 = 0 and substituting same 

in Equation (39) gives: 

w𝑆 = 𝑘0                        (40) 
 

Equation (40) suggests that z component of deflection, w𝑆 of the middle surface of the plate is a constant and not 

a variable. Therefore, the deflection, w is a function of only x and y (or R and Q). 

 

Solving Equation (33) gives the deflection of the plate, w in the form shown in Equation (41). 

w = [1 R R2 R3 R4]  

[
 
 
 
 

a0

a1

a2 2⁄

a3 6⁄

a4 24⁄ ]
 
 
 
 

× [1 Q  Q2 Q3 Q4] 

[
 
 
 
 

b0

b1

b2 2⁄

b3 6⁄

b4 24⁄ ]
 
 
 
 

                   (41) 

 

Equation (41) can be written in a terse as: 

w = A h                                                       (42) 

Where A and h are the coefficient of deflection and the shape function of the deflected curve respectively. 

If Equation (42) is substituted into Equations (28) and (29), they give: 

Փ𝑥  =
A𝐶𝑅

𝑎

dℎ

dR
 =

𝐵𝑅

𝑎

dℎ

dR
                         (43) 

Փ𝑦 = 
A𝐶𝑄

𝑎 ∝
.
dℎ

dQ
 =

𝐵𝑄

𝑎 ∝
.
dℎ

dQ
                   (44) 
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2.6 Bending Analysis 

Bearing in mind that deflection, w is not a function of S, substituting Equations (42), (43) and (44) into Equation 

(25) and simplifying gives Equation (45). 

П =
𝑎𝑏D0

2𝑎4
 ((1 − μ)[𝐴2 + 2A𝐵𝑅 + 𝐵𝑅

2]KRR

+
1

∝2
[2μ𝐴2 + 2μA𝐵𝑄 + 2μA𝐵𝑅 + 2μ𝐵𝑅𝐵𝑄 + 4(0.5 − μ)A2 + 4(0.5 − μ)A𝐵𝑅 + 4(0.5 − μ)A𝐵𝑄

+ (0.5 − μ)𝐵𝑅
2 + 2(0.5 − μ)𝐵𝑅𝐵𝑄 + (0.5 − μ)𝐵𝑄

2 ]KRQ +
(1 − μ)

∝4
[𝐴2 + 2A𝐵𝑄 + 𝐵𝑄

2]KQQ

+ 12(0.5 − μ)
𝑎2

𝑡2
[4A2 + 4A𝐵𝑅 + 𝐵𝑅

2]KR +
12(0.5 − μ)

 ∝2

𝑎2

𝑡2
[4A2 +  4A𝐵𝑄 + 𝐵𝑄

2]KQ

− 
2q𝑎4A 

D0
Kq)                       (45) 

Where:  

K𝑅𝑅 = ∫ ∫ (
∂2ℎ

∂𝑅2
)

21

0

1

0

dR dQ , K𝑅𝑄 = ∫ ∫ (
∂2ℎ

∂R∂Q
)

21

0

1

0

dR dQ,  K𝑄𝑄 = ∫ ∫ (
∂2ℎ

∂𝑄2
)

21

0

1

0

dR dQ,  

 KR = ∫ ∫ (
∂ℎ

∂R
)

21

0

1

0

dR dQ, KQ = ∫ ∫ (
∂h

∂Q
)

21

0

1

0

dR dQ Kq = ∫ ∫ h
1

0

1

0

dR dQ,  

 

Minimizing Equation (45) with respect to BR and BQ produces Equations (46) and (47) respectively. 

[2(1 − μ)KRR +
2(0.5 − μ)

∝2
KRQ + 24(0.5 − μ) (

𝑎

𝑡
)

2

KR] 𝐵𝑅 + [
1

∝2
KRQ] 𝐵𝑄

+ [2(1 − μ)KRR +
2(1 − μ)

∝2
KRQ + 48(0.5 − μ) (

𝑎

𝑡
)

2

KR] 𝐴 = 0               (46) 

[
1

∝2
KRQ] 𝐵𝑅 + [

2(0.5 − μ)

∝2
KRQ +

2(1 − μ)

∝4
KQQ +

24(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

KQ] 𝐵𝑄

+ [
2(1 − μ)

∝2
KRQ +

2(1 − μ)

∝4
KQQ +

48(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

KQ] 𝐴 = 0              (47) 

 

Solving Equations (46) and (47) simultaneously would give: 

𝐵𝑅 = TR. 𝐴              (48) 
𝐵𝑄 = TQ. 𝐴              (49) 

Where: 

𝑇𝑅 =
(𝑚12𝑚23 − 𝑚13𝑚22)

(𝑚11𝑚22 − 𝑚12𝑚21)
             (50) 

𝑇𝑄 =
(𝑚21𝑚13 − 𝑚11𝑚23)

(𝑚11𝑚22 − 𝑚12𝑚21)
             (51) 

𝑚11  =  2(1 − μ)KRR +
2(0.5 − μ)

∝2
KRQ + 24(0.5 − μ) (

𝑎

𝑡
)

2

KR           (52) 

𝑚12 = 𝑚21 = 
1

∝2
KRQ                                                                                      (53) 

𝑚13 = 2(1 − μ)KRR +
2(1 − μ)

∝2
KRQ + 48(0.5 − μ) (

𝑎

𝑡
)

2

KR               (54) 

𝑚22 =  
2(0.5 − μ)

∝2
KRQ +

2(1 − μ)

∝4
KQQ +

24(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

KQ         (55)  

𝑚23 =  
2(1 − μ)

∝2
KRQ +

2(1 − μ)

∝4
KQQ +

48(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

KQ            ( 56) 

 

If Equation (45) is minimized with respect to A, it gives: 

 2(1 − μ)[𝐴 + 𝐵𝑅]KRR +
2

∝2
[2μ𝐴 + μ𝐵𝑄 + μ𝐵𝑅 + 4(0.5 − μ)𝐴 + 2(0.5 − μ)𝐵𝑅 + 2(0.5 − μ)𝐵𝑄 ]KRQ

+
2(1 − μ)

∝4
[𝐴 + 𝐵𝑄]KQQ + 48(0.5 − μ) (

𝑎

𝑡
)

2

[2𝐴 + 𝐵𝑅]KR +
48(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

[2𝐴 + 𝐵𝑄]KQ

− 
2q𝑎4 

D0
Kq = 0                                                       (57) 
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If Equations (48) and (49) are substituted into Equation (57) and simplified, it gives: 

2(1 − μ)𝐴[1 + TR]KRR +
2

∝2 𝐴[2μ + μTQ + μTR + 4(0.5 − μ) + 2(0.5 − μ)TR + 2(0.5 − μ)TQ ]KRQ +
2(1 − μ)𝐴

∝4 [1 + TQ]KQQ

+ 48(0.5 − μ)𝐴(
𝑎

𝑡
)
2

[2 + TR]KR +
48(0.5 − μ)

 ∝2 𝐴(
𝑎

𝑡
)
2

[2 + TQ]KQ  =
2q𝑎4 

D0
Kq                         (58) 

 

Equation (58) can be written in the form shown in Equation (59) 

AKT  =
q𝑎4

D0
K𝑞                          (59) 

Where: 

KT = (1 − μ)[1 + TR]KRR +
1

∝2
[2μ + μTQ + μTR + 4(0.5 − μ) + 2(0.5 − μ)TR + 2(0.5 − μ)TQ ]KRQ

+
(1 − μ)

∝4
[1 + TQ]KQQ + 24(0.5 − μ) (

𝑎

𝑡
)

2

[2 + TR]KR +
24(0.5 − μ)

 ∝2
(
𝑎

𝑡
)

2

[2 + TQ]KQ (60) 

From Equation (59), it follows that: 

A =
K𝑞q𝑎4

KT D0
                       (61) 

 

Substituting Equation (61) into Equations (48) and (49) respectively gives: 

𝐵𝑅 = TR.
K𝑞

KT 
 
q𝑎4

D0
             (62) 

𝐵𝑄 = TQ.
K𝑞

KT 
 
q𝑎4

D0
             (63) 

 

If Equations (61), (62) and (63) are substituted into Equations (42), (43) and (44) respectively, the following equations are 

obtained. 

w =
K𝑞

KT 
 
q𝑎4

D0
 h                 (64) 

Փ𝑥 = TR.
K𝑞

KT 
 
q𝑎3

D0

 dh

dR
      (65) 

Փ𝑦 =
TQ

∝
.
K𝑞

KT 
 
q𝑎3

D0

dh

dQ
     (66) 

 

Substituting x =  aR , y =  bQ , z =  tS and ∝ = b/a into Equations (13) to (18) bearing in mind that the deflection, 

w, is not a function of z or s gives the following. 

σx = 𝐸∗ [
𝑡𝑆(1 − μ)

𝑎2
(
∂2𝑤

∂𝑅2
+ 𝑎

∂ϕ𝑥

∂𝑅
) + 

𝑡𝑆μ

𝑎2 ∝2
(
∂2𝑤

∂𝑄2
+ 𝑎 ∝

∂ϕ𝑦

∂Q
)]          (67) 

σy = 𝐸∗ [
𝑡𝑆μ

𝑎2
(
∂2𝑤

∂𝑅2
+ 𝑎

∂ϕ𝑥

∂𝑅
) +

𝑡𝑆(1 − μ)

𝑎2 ∝2
(
∂2𝑤

∂𝑄2
+ 𝑎 ∝

∂ϕ𝑦

∂Q
)]              (68) 

σz = 𝐸∗ [
𝑡𝑆μ

𝑎2
(
∂2𝑤

∂𝑅2
+ 𝑎

∂ϕ𝑥

∂𝑅
) +

𝑡𝑆μ

𝑎2 ∝2
(
∂2𝑤

∂𝑄2
+ 𝑎 ∝

∂ϕ𝑦

∂Q
)]                       (69) 

τ𝑥𝑦 = 𝐸∗ [
𝑡𝑆(0.5 − μ)

𝑎2
(
2

∝

∂2𝑤

∂𝑅 ∂Q
+

𝑎

∝

∂ϕ𝑥

∂Q
+  𝑎

∂ϕ𝑦

∂𝑅
)]                               (70) 

τ𝑥𝑧 = 𝐸∗ [
(0.5 − μ)

𝑎
(2

∂w

∂𝑅
+  𝑎ϕ𝑥)]                                                                (71) 

τ𝑦𝑧 =  𝐸∗ [
(0.5 − μ)

𝑎
(
2

∝

∂w

∂Q
+  𝑎ϕ𝑦)]                                                               (72) 

 

Consequently, Equations (64), (65) and (66) are substituted into Equations (67) to (72), then Equations (12) and (23) 

substituted into the resultant Equations to obtain the equations for the stresses in non-dimensional form as: 

σ̅x = σx .

𝑡2

q𝑎2
=  12 𝑆 [(1 − μ)(1 + TR)

∂2ℎ

∂𝑅2
+ 

μ

∝2
(1 + TQ)

∂2ℎ

∂𝑄2
]
K𝑞

KT 
  (73) 

σ̅y = σy.

𝑡2

q𝑎2
= 12𝑆 [μ(1 + TR)

∂2ℎ

∂𝑅2
+

(1 − μ)

∝2
(1 + TQ)

∂2ℎ

∂𝑄2
]
K𝑞

KT 
          (74) 
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σ̅z = σz.

𝑡2

q𝑎2
= 12𝑆μ [(1 + TR )

∂2ℎ

∂𝑅2
+

(1 + TQ)

∝2

∂2ℎ

∂𝑄2
]
K𝑞

KT 
                       (75) 

τ̅𝑥𝑦 = τxy.
𝑡2

q𝑎2
=  12

𝑆

∝
[(0.5 − μ)(2 + TR + TQ )

∂2ℎ

∂𝑅 ∂Q
]
K𝑞

KT 
                (76) 

τ̅𝑥𝑧 =
τxz

q
(
𝑡

𝑎
) = 12 [(0.5 − μ)(2 + TR)

∂ℎ

∂𝑅
] 

K𝑞

KT 
 (

𝑎

𝑡
)

2

                            (77) 

τ̅𝑦𝑧 =
τyz

q
(
𝑡

𝑎
) = 12 [

(0.5 − μ)

∝
(2 + TQ )

∂ℎ

∂Q
] 

K𝑞

KT 
 (

𝑎

𝑡
)

2

                         (78) 

 

For the out-of-plane displacement w, if Equation (23) is substituted into Equation (64) and simplified, it gives the non-

dimensional form of the deflection, w̅ as: 

 

w̅ =  w
𝐸𝑡3

q𝑎4
= 12 (1 − 2μ)(1 + μ)

K𝑞

KT 
 h        (79)  

 

3.0 Numerical Example 

It is required to analyze a thick rectangular 

SSSS isotropic plate whose Poisson’s ratio is 0.3. The in-

plane normal stresses (x) and (y) are to be obtained at 

coordinate (0.5, 0.5, 0.5). The in-plane shear stress (τxy) 

is to be obtained at (0, 0, 0.5). The out-plane shear stress 

(τxz) is to be obtained (0, 0.5, 0), while the out-plane 

shear stress (τyz) is to be obtained at (0.5, 0, 0). Also, the 

transverse displacement (w) is to be obtained at (0.5, 0.5, 

0). The shape function for the given plate is h = (R – 2R3 

+ R4) (Q – 2Q3 + Q4). 

The stiffness coefficients are: K𝑅𝑅 = K𝑄𝑄 = 0.23619, K𝑅𝑄 

= 0.23592, K𝑅 = KQ = 0.02390, Kq = 0.04. 

 

3.1 RESULT AND DISCUSSION 
The results of the numerical examples are 

presented in Table 1 and Table 2 in comparison with the 

works of previous scholars.  

 

Table 1 shows the values of the non-

dimensional displacement, w̅  of simply supported 

isotropic rectangular plate under uniformly distributed 

transverse load with those obtained by previous scholars. 

It is observed from Table 1 that the results of the lateral 

displacement (w) obtained from three-dimensional 

analysis vary with the results of refined plate theories. It 

is therefore seen that refined plate theories overestimate 

the lateral displacement of a plate. The variation of the 

lateral displacement obtained from this present study and 

that of Shimpi and Patel (2006) has a maximum 

percentage difference of 19.94% at a span to thickness 

(
𝑎

𝑡
)  value of 20 and aspect ratio (

𝑏

𝑎
)  of 1.0 while its 

minimum percentage difference is 11.65% occurring at a 

span to thickness (
𝑎

𝑡
) value of 7.14286 and aspect ratio 

(
𝑏

𝑎
) of 0.5. With the works of Reissner, the maximum 

percentage difference is 19.89% at a span to thickness 

(
𝑎

𝑡
)  value of 20 and aspect ratio (

𝑏

𝑎
)  of 1.0 while its 

minimum percentage difference is 10.99% occurring at a 

span to thickness (
𝑎

𝑡
) value of 7.14286 and aspect ratio 

(
𝑏

𝑎
) value of 0.5.  

 

Table 4.1: Results of non-dimensional displacement, (𝒘̅) for a rectangular plate under uniformly distributed 

transverse load 

Plate dimensional 

parameters 
𝐰̅ =  

𝐰𝐄

t𝒒
𝐱 

𝟏

𝟐(𝟏 + μ)
 

at x = a/2, y = b/2 
𝑏

𝑎
 

𝑎

𝑡
 

Present 

Study 

Shimpi and 

Patel (2006), 

(SP) 

Reissner (R). 

Taken from reference 

of Srinivas, (1970) 

Percentage difference between Present 

study and previous works. (%) 

SP RO 

 

2.0 

20 5850.92 6855.0 6852.9 17.16 17.12 

10 376.12 437.52 437.02 16.32 16.19 

7.14286 101.17 116.91 116.66 15.56 15.31 

 

1.0 

20 2302.15 2761.3 2760.0 19.94 19.89 

10 150.02 178.45 178.13 18.95 18.74 

7.14286 41.09 48.40 48.247 17.79 17.42 

 

0.5 

20 376.12 437.52 437.02 16.32 16.19 

10 25.96 29.604 29.492 14.04 13.61 

7.14286 7.57 8.452 8.4025 11.65 10.99 
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It is seen from Table 1, that the variation in the 

lateral displacement increases with an increase in the 

span to thickness (
𝑎

𝑡
) value. All these suggest that the 

refined plate theory is not very suitable for thick plate 

analysis, hence a three-dimensional analysis is 

recommended for thick plate analysis. 

 

Table 2 shows the results of the non-

dimensional lateral displacement and stresses obtained 

from this study and that obtained by Ibearugbulem et al., 

(2021) for a square isotropic plate. It can be seen from 

Table 2 that the values of the non-dimensional lateral 

displacement, w̅, obtained in this study follow similar 

trend with the values obtained by Ibearugbulem et al., 

(2021) as the values decrease with an increase in the span 

to thickness, 
𝑎

𝑡
 value.  

 

Table 4.2: Results of non-dimensional displacement and stresses for simply supported isotropic rectangular 

square plate under uniformly distributed transverse load 

 
 𝐰̅ =

𝟏𝟎𝟎𝐄𝟎𝒕
𝟑𝒘

𝐪𝒂𝟒
 

(0.5, 0.5, 0) 

𝛔̅𝐱 =
𝛔𝐱 𝒕

𝟐

𝐪𝒂𝟐
 

(0.5, 0.5, 0.5) 

𝛔̅𝒚 =
𝛔𝐲 𝒕

𝟐

𝐪𝒂𝟐
 

(0.5, 0.5, 0.5) 

𝝉̅𝐱𝐲 =
𝝉𝐱𝐲 𝒕

𝟐

𝐪𝒂𝟐
 

(0, 0, 0.5) 

𝝉̅𝐱𝐳 =
𝝉𝐱𝐳𝒕

𝐪𝐚
 

(0, 0.5, 0) 

 
𝑎

𝑡
= 4  

Present study (P) 5.0159 0.34042 0.34042 -0.14524 0.26151 

Ibearugbulem et al., (2021), (I) 4.8207 0.3832 0.3832 -0.1635 0.1976 

% Diff. b/w P and I 3.89 12.57 12.57 12.57 24.44 

  
𝑎

𝑡
= 10 

Present study (P) 3.9004 0.34048 0.34048 -0.14526 0.26154 

Ibearugbulem et al., (2021), (I) 4.4039 0.3944 0.3944 -0.1683 0.2425 

% Diff. b/w P and I 12.91 15.86 15.86 15.88 7.27 

  
𝑎

𝑡
= 100 

Present study (P) 3.6900 0.34049 0.34049 -0.14527 0.26155 

Ibearugbulem et al., (2021), (I) 4.3032 0.3971 0.3971 -0.1694 0.2533 

% Diff. b/w P and I 16.62 16.65 16.65 16.63 3.14 

  
𝑎

𝑡
= 1000 

Present study (P) 3.6879 0.34049 0.34049 -0.14527 0.26155 

Ibearugbulem et al., (2021), (I) 4.3021 0.3971 0.3971 -0.1694 0.2534 

% Diff. b/w P and I 16.65 16.65 16.65 16.63 3.10 

 

The variation in the values of the non-

dimensional lateral displacement, w̅  obtained in this 

present study and that obtained by Ibearugbulem et al., 

(2021) has a maximum percentage difference of 16.65% 

and a minimum value of percentage difference of 3.89% 

at span to thickness, 
𝑎

𝑡
 values of 1000 and 4 respectively.  

 

This shows that as span to thickness, 
𝑎

𝑡
 values 

get smaller, the results obtained by the Alternative II 

refined plate theory approaches the value obtained using 

a third order shear deformation theory by Ibearugbulem 

et al., (2021). For the non-dimensional parameters of the 

in-plane normal stresses, σ̅x  and σ̅y , the maximum 

percentage difference is obtained as 16.65% at a span to 

thickness, 
𝑎

𝑡
 value of 100 and above while the least 

percentage difference is obtained as 12.57% at a span to 

thickness, 
𝑎

𝑡
 value of 4. The variation in the values of the 

non-dimensional parameters of the in-plane shear stress, 

𝜏̅xy follows the same trend as that of the in-plane normal 

stresses. It has a maximum percentage difference of 

16.63% at a span to thickness, 
𝑎

𝑡
 value of 100 and above 

while the least percentage difference is obtained as 

12.57% at a span to thickness, 
𝑎

𝑡
 value of 4. For the 

transverse shear stress, 𝜏̅xz the variation has a maximum 

percentage difference of 24.44% at a span to thickness, 
𝑎

𝑡
 

value of 4 while the least percentage difference is 

obtained as 3.10% at a span to thickness, 
𝑎

𝑡
 value of 1000. 

This indicates that the values of the transverse shear 

stress, 𝜏̅xz obtained using the Alternative II theory varies 

more significantly with those obtained using third order 

shear deformation theory for thick plates than in thin 

plates. 

 

4.0 CONCLUSION 
From the results obtained from this study, it can 

be concluded that refined plate theories overestimate the 

lateral displacements in thick plates. Hence, three-

dimensional analysis is recommended. Also, it is seen 

from the comparison done with the works of previous 

authors that the Alternative II plate theory produced 

reasonably results, hence can be used in thick plate 

analysis. 
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