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Abstract

This research article considers the flexural rigidity influence along both x and y axes on the dynamic response of orthotropic
rectangular plate resting on constant elastic foundation with elastic end conditions. The orthotropic rectangular plate model
is a coupled fourth order partial differential equation having variables and singular coefficients. The solutions to this model
are arrived at by reconstructing the fourth order partial differential. This partial differential equation model is converted to
a set of coupled second order ordinary differential equations by using a special technique adopted by Shadnam et al., [11].
This set of second order ordinary differential equations is then reduced using modified asymptotic method of Struble. The
closed form solution is evaluated, resonance conditions are obtained and the results are showed in plotted curves to depict
the influence of flexural rigidities along both x and y axes on the dynamic response of orthotropic rectangular plate resting
on constant elastic foundation with elastic end conditions for both cases of moving distributed mass and moving distributed
force.
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rigidity results to a higher natural frequency of the
structure. The term “natural frequency” is the frequency
at which the structure vibrates without any external

1. INTRODUCTION
Flexural rigidity plays a crucial role in
understanding the dynamic response of orthotropic

rectangular structures that are supported on an elastic
foundation. The term “flexural rigidity" refers to a
material’s resistance to bending or deformation under the
action of applied load. In the case of orthotropic
rectangular structures, the flexural rigidity is influenced
by the material properties and the dimensions of the
structure. When an orthotropic rectangular structure is
supported on a constant elastic foundation, its dynamic
response is significantly affected by flexural rigidity of
the structure. The dynamic response refers to the
behavior of the structure when subjected to dynamic
loads or vibrations. The flexural rigidity of the structure
determines the stiffness of the structure in resisting
bending deformations. A higher flexural rigidity implies
greater resistance to bending, resulting in a stiffer
structure. Conversely, a lower flexural rigidity allows for
more bending and deformations in the structure. The
dynamic response of the structure is disturbed by the
flexural rigidity in several ways. Firstly, a higher flexural

forces. A stiffer structure has a higher natural frequency,
meaning it will vibrate at a higher frequency. Secondly,
the flexural rigidity influences the mode shapes of the
structure. Mode shapes refer to the patterns of vibration
exhibited by the structure at different frequencies. A
higher flexural rigidity can result in more rigid mode
shapes, where the structure exhibits minimal
deformation during vibration. On the other hand, a lower
flexural rigidity can lead to flexible mode shapes, where
the structure undergoes significant deformations during
vibration. Lastly, the flexural rigidity affects the
damping characteristics of the structure. Damping refers
to the dissipation of energy during vibration. A higher
flexural rigidity typically results in higher damping, as
the structure is better able to resist deformations and
dissipate energy. Conversely, a lower flexural rigidity
may result in lower damping, leading to more energy
being retained in the structure during vibration.

Citation: Adeoye, A. S & Adeloye, T. O (2024). Flexural Rigidity Influence on Dynamic Response of Orthoropic 140
Rectangular Plate Resting on Constant Elastic Foundation. Saudi J Civ Eng, 8(7): 140-158.



Adeoye, A. S & Adeloye, T. O, Saudi J Civ Eng, Sep, 2024; 8(7): 140-158

Many researchers in the fields of applied
mathematics and mechanics have worked tiredlessly on
plate model most especially on orthotropic rectangular
plate model. Some of these researchers include: Hermon
[1] extended the work of Warbuton [2] to analyse the free
vibration of rectangular orthotropic plates having either
clamped or simply supported conditions using the
Rayleigh method. Hosseini and Fadaee [3] proposed an
exact solution for free flexural vibration of rectangular
thick plates using third order shear deformation plate
theory. Werfalli and Karoud [4] conducted a free
vibration analysis of rectangular plates using Galerkin
based finite element method. Mama [5] studied and even
proposed a solution offree harmonic equation of simply
supported plates using Galerkin-Vlasov method.
Hatiegan and et al., [6] analysed thin clamped plates of
different geometric forms using finite element method.
Benamar and et al., [7] examined the effects of large
vibration amplitudes on the mode shapes and natural
frequencies of thin isotropic plates. Alfano and Pagnotta
[8] performed a suitable approximate relationships,
relating the resonance frequencies to the elastic constants
of isotropic thin plates. Awodola and Adeoye [9] carried
out study the vibration of orthotropic rectangular plates
on variable elastic Pasternak foundation with clamped
end conditions. Ugural [10] and Okafor and
Oguaghamba [11] adoptied Ritz and Galarkin methods
to solve isotropic and orthotropic plate problems.
Awodola and Omolofe studied the response of
concentrated moving masses of elastically supported
rectangular plates on Winkler elastic foundation by the
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method of separation of variable. Adeoye and Awodola
[12] investigated the dynamic behaviour of moving
distributed masses of orthotropic rectangular plate with
clamped-clamped boundary conditions on constant
elastic foundation. Hu, et al., [13] purported vibration
solutions to orthotropic rectangular plates by making use
of symplectic geometry method. Adeoye and Adeloye
[14] assessed the dynamic characteristics of orthotropic
rectangular plate under the influence of moving
distributed masses on variable elastic foundation using
the variable separable.

In all the aforementioned researches, no works
explicitly discussed the influence of flexural rigidities
along both x and y axes on the dynamic response of
orthoropic rectangular plate. In this research, the
influence of flexural rigidities along both x and y axes on
the dynamic response of orthoropic rectangular plate
resting on constant elastic foundation with elastic end
conditions will be investigated.

2. GOVERNING EQUATION

The transverse displacement W (x,y,t) of
orthotropic rectangular plates that rests on a bi-
parametric elastic foundation and traversed by
distributed massM,traversing with constant velocity k,.
along a straight line parallel to the x-axis issuing from
point y = ¢ on the y-axis with flexural rigidities D,, and
D, is governed by the fourth order partial differential
equation given as:

W@%ﬂ

at2
2

x2

M

Where D, and D,, are the flexural rigidities of the plate along x and y axes respectively.

E.h3 E,h3
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E, and E,, are the Young’s moduli along x and y axes respectively, G, is the rigidity modulus, v, and v, are
Poisson’s ratios for the material such that E,v,, = E, v, , p is the mass density per unit volume of the plate, h is the plate

thickness, t is the time, x and y are the spatial coordinates in x and y directions respectively, R, is the rotatory inertia
correction factor, K, is the foundation constant and g is the acceleration due to gravity, H(.) is the Heaviside function.

Re- expressmg equation (2), one obtains
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Which can be represented further as:
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Where x2 is the natural frequencies, n = 1,2,3, ...
The initial conditions, without any loss of generality, is taken as:

W(xy,) =0=2W(xy,t) )

3. Analytical Approximate Solution
To obtain an expression for the solution of equation (4), one applies technique of Shadnam et al., [11] which
requires that the deflection of the plates be in series form as

W(x,y,t) = L=y 8 (%, ¥)én(t) (®)

Where 8, (x,y) = 8,;(x)0,;(y) and
)/Tll.

Oni(x) = sm];—x + Amcosi x+ Bmsmh—x + Cmcosh—x
X X JC JC

m(y)—smy’”y+An}cos—y+Bmsmh y+Cn]cosh y (6)

The right hand side of equation (4) when written in series form takes the form:
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Multiplying both sides of equation (8) by §,,(x, ¥), integrating on area A of the plate and considering the orthogonality of
6m(x,y), One gets:

on(t) = %27&1 Jul O(axzatz Wy, t) + 5o zatz W(x,y,t)) = . W W(x,y,t) =
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and zero whenn # m

Where
n* = [, 63(x,y)dA )

Making use of equation (6), equation (8), taking into account equation (4), can be written as:
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When equation (10) is simplified further one obtains:
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The system of equations in equation (11) is a set of coupled ordinary differential equations
Making use of Fourier series representation, the Heaviside functions take the form

H(x —kpt) =130 SREIEE0D gy <1 (12)
r
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Hiy—@) =1+ 50, 8202 o<y <1 (13)

Substituting equations (12) and (13) into equation (11) and simplifying, one obtains:
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Which is the transformed equation that governs the problem of an orthotropic rectangular plate resting on constant bi-
parametric elastic foundation.

Where
82 92
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* ok * % * % * ok
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Om(x,y) is assumed to be the products of functions &;,,, (x) 8., (v) which are the beam functions in the directions of x and
y axes respectively. That is

S (%, y) = Gjm (0) 8w (¥) (39)
Where,
Sim(x) = sindjp,x + AjpycoSAjpmx + BjpsinhA;p, x + Cjp coshAjy, x
Swm (¥) = sind,,,, + Ayym€0SAy,my + Bymsinhd .,y + Cymcoshi,,y (40)

Where A, Bim, Cim, Ajm, Bjm and Cj, are constants determined by the boundary conditions while ;,,, and 6,,,, are
called the mode frequencies

Where

j wm
A =2 A =52 (41)

Considering a unit mass, equation (19) can be re-expressed as
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Equation (43) is the fundamental equation of the rectangular plate problem.

Where,
M
a=-"" 0= LyL, (43)

O (ct) = sing,, (t) + Ay cos¢,, (t) + By,sinhe,, (t) + Cp,coshe,, (£) (44)
O (s) = siny,, + A, cost,y, + By,sinhy, + C,coshy,  (45)

P =T, 1y = T2 (46)

Ly =™ Ly
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3.1 Orthotropic Rectangular Plate Traversed by a Moving Force

In moving force problem in mechanics, the motion of the structure or body is being influenced by an external
force that is continuously changing or moving. This force which is represented by the moving load is assumed being only
transferred to the structure. In this case, the inertia effect is negligible. Setting a = 0 in the fundamental equation (42), one
obtains:

é.n(t) + (1 - %)Krzlfn(t) - ﬁ [.uROSOé:n(t) - Zﬁglfn(t) - ngzfn(t) - Dy£3fn(t) -
Ko&4én(£) + Goesén(t) + X1 g2n (#Rogogq(t) — 2B&:18q(t) — Dyer§q(t) — Dyeséy(t) (47)
+ (kG = Koe)€q(0) + GoesEq ()] = 7% 8 (krt) 51 ()

Which is further be simplified as:
€n(t) + Q26 (1) — W[HRoe0én () — 2Be18n () — Dxrén(t) — Dyesén(t) — Koeadn(t)
+Goesén(t) + Ti1gen (MRog0Sq (1) — 2B184(t) — Dy (t) — Dyesdy (8) + (0] — (48)
Ko£4)8q (1) + Goeséq(t))] = ¥M g8y, (krt) 81 ()

Where 02 = (1 — k2, ¥ = —
ere 03 = (1 - i, ¥ =

Expanding and re-arranging equation (48), one gets:
[1— WuRoE16n (1) + (QF — WJe)$n(t) — ¥ Xol1g2n (RoE0Eq(t) — 282184(t) — Dy,

£4(8) — Dyety(6) + (k2 — Ko£s)Eq () + Goséy(£)) = PMgSyn (ks )5, (0) “9
Simplifying further, one obtains:
En(0) + g (6) 5 gn (HRoE0EG () — 288184 (6) — Dyt 50
£ () = DyesQq(0) + (uif = Koen)§q(0) + GoesEy (1)) = s S (kD)8 ()
Where,
Jo = —2P&; — Dye; — Dyes — Koy + Goes (51)

For any arbitrary ratio ¥, defined as:
N '4 .
Y* = —— one obtains
1+¥

*

Y = =¥ +o(¥*2)+..

1-y-

For only o(¥*), one obtains
Y=y

On application of binomial expansion,
m =1+ P uUR,Ty + o(¥*?)+... (52)
On putting equation (52) into equation (50), one obtains:
() + (Q2 =W )1+ WP*uRpey + 0(P2)+...)E () + W (1 + W*uRyey + 0(¥*2)
+.. ) Z?:l,q::n (.uRO‘g()ch (t) - Zﬁ‘glgq (t) - ngzfq(t) - Dy€3€q(t) + (MK(% - K0€4) (53)
§q() + Goesy () =¥ aMg(1 + ¥ uRoTo + 0(F ) +... )81 (K t) 5, ()

Retaiping only o(¥*), equation (54) becomes: )
&) + [QF(1 + P URTo) — P7J6lén () + P Zg1,gen (URoToSq (t) — 2B18,(t) — Dyey

54
§q(t) — Dyesdy(t) + (urg — Koea)§q(t) + Goessy () = ¥ M g8 (krt) 81 () &9
Whic.h is simplified further as: )
En() + Q58 (6) + ¥ Xai1gen (URoE0Sq(8) — 2B184(t) — Dr&ady (1) — Dyesdy(t) (55)

(urG — Kog4)§q() + Goeséq(8)) = W MgS,, (k) 5, ()
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Where,
= [Q5(1 + P puRog) — 6] (56)
Using Struble’s technique, one obtains
Qfi-J
Qpp = Qp — (T;) (57)

Represents the modified frequency for moving force problem.
Using equation (58), the homogeneous part of equation (55) can be written as:

é‘n(t) + Q%nfn ®=0 (58)

Hence, the entire equation (56) gives:
$n (D) + Q%nfn () =¥"Mg&y, (kt)6m (ky) (59)

On solving equation (59) one obtains:

Mg¥*Sm (@) , .
$n() = m [(¢12n + Qrzm)((pmSln‘ant = Qppsing,,t) — Aann(d)rzn + Q%m)

(C05¢mt - COSQ‘nnt) - Bm (¢12n - Q%n)(q’)mSinant - anSinh¢mt) + Cann((pr%l (60)
—02,)(cosh@,,t — cosQuut)]

Making use of equation (5) one obtains:

W(x» Y, t) = ij:l Zwmzl m [((l’rzn + Q%n)(quSannnt - an51namt) - Amﬂnn
(¢12n + Q%m)(cosqut — cosQuut) — By, (qb?%’l Qrzm)((PmSin'ant nnSinh¢mt) + CnQyn

(%, — Q2,) (coshg,,t cosﬂ,mt)](sm —x+ Ajmcos Sim e 4 B]msmh’—mx + (61)

C; mcoshﬂ x) (sm y + Aymcos= = Swm y + mesmhg‘”—my + Cymcosh="% Swm y)

Represents the transverse displacement response to a moving force problem of orthotropic rectangular plate.

3.2 Orthtropic Rectangular Plate Traversed by a Moving Mass

In moving mass problem, the system or body is subjected to an external force or forces as it moves. The behaviour
of the system is influenced by the interaction occurred between the applied forces and the system’s mass, which results in
various changes, effects and phenomena. That is to say, the weight and as well as inertia forces are transferred to the moving
load. That is the inertia effect is not negligible. That is, @ # 0 and so it is expedient to solve the entire equation (42).

To solve this equation, one make use of an analytical approximate method. This method is known as an
approximate analytical method of Struble. The homogeneous part of equation (42) shall be replaced by a free system
operator defined by the modified frequency fnn Thus, the entire equation becomes:

g * {00 * 2a+1)7ky o) *
fn(t) + Q%nfn(t) + a0 Zq—l [(gﬁ 2 (Za 1T M Za—l E2

2a+1
sin(2a+1)mk,t cos(2k+1)mep sm(2k+1)mp
—a D B, z°c°—1 P (T, T
cos(2a+1)mk,t sin(2a+1)mkyt cos(2k+1)me
R _ yey T T (e, e e 1
sin(2k+1)me >lﬂcos(Za+1)71:k,~t: _ * sin(2a+1)mk,t
SEEDEY ) Ea () + 2key (&7 + =5 (B 75 DL _ i | gy, TnC Ut
cos(2k+1)me sin(2k+1)me cos(2a+1)mkyt
)(Zk=1 i1 2k+1 — Xjz1 Ti2 2k+1 )+ (Za 1713 2a+1 -
sin(2a+1)mkyt cos(2k+1)n<p sin(2k+1)me
~ Xaz1 Tis 2a+1 ) +_(Zk 1715 2k+1 k=1 Tie 2k+1
cos(2a+1)rrk sin(2a+1)mkyt
))fq(t) + kr (‘98 (Ea 1T * 2a+1 - Za 1T * 2a+1 - )
: 62)
0 « cos(2k+1)mp _ « sin(Zk+1)me 1 * cos(2a+1)mkyt (
Q& — — Xk e Dt (Z —
k=119 2k41 k=1 720 2k41 a=1T 2a+1
_ * sin(2a+1)mkyt i 0 « cos(2k+1)n’(p _ « Sin(2k+1)me
Za 1T 2a+1 ) (Zk 1 %23 2k+1 Zk—l 24 2k+1

NED] = B 30 0m (r 8 ()
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Where 6* = ni

On expanding and simplifying equation (62) one obtains:

) 2a+ Dkt
fn(t) + Q%nfn(t) + aO*[(£6 T2 (Z COS( za + 1)1-[ Z T;

a=1

sin(2a + 1)mk,t i ,Cos(2k + Dme - ,sin(2k + D)me 1 i .
2a+ 1 3T 2k +1 VR TR w2

a=1

cos(2a+ mk,t Z sm(Za + 1)7l'k Z cos(Zk + D - .
4

2a+ 1 T 2a+1 T2kr1 4

sin(2k + Dre__.. P+ 2k Z cos(2a+ Drk,t i , sin(Za+ V)mk,t
2kr1 5O+ 2 (et 2( T 2a+1 N P

a=1

cos(Zk + 1)7'[(p - , sin(2k + 1)7‘[(p cos(2a + Drmk,t
)(Z T2kl LT 2kt (Z T 2a+1

Z ., sin(2a+ D)mk, t Z cos(Zk + Do - ., sin(2k + Do
N PR ( T2k+1 4T 2k+ 1

a=1 =

. 2 cos(Za + Dk, t - ., sin(2a+ D)mk,t
én(6) + I (2 + — (Z T Z Tl o)

i , cos(2k + Dme = , sin(2Zk + 1)714) Z cos(Za + Dk, t
o ok 1 “720 2k +1 ( T 2a+1

k=1

i , sin(2a + V)mk, t Z cos(Zk + 1)7r<p - , sin(Zk + Dme
27 2a+1 an¢ T 2k+1 T ok 1

a=1 k=1

2a+ Dkt
NEL(D)] + ad” Z (e + Z(Z cos(zaa++1)7r t_ZT;

q=1,q#n

sin(2a + 1)rk,t i ,cos(Zk + Dy - . sin(2k + 1)7l'(p Z
2a+1 BT ok + 1 “T‘* 2k +1 an¢

cos(2a + 1mk,t Z sm(2a+ Dk, t Z cos(2k + 1)7r<p - .
2a+1 T zar1 O 'm T 2k+1 's

k=1

sin(2k + D __ .. ) + 2k Z cos(23+1)7tk t i ., sin(2a+ V)mk,t
i+ oaOF 2k (et 2( T 2a+1 0T 2a+1

cos(Zk + l)mp c , sin(2k + l)n(p cos(2a + Dk, t
)(Z T2kl LT 2k+1 (Z T 2a+1

Z , sin(2a+ D)mk, t Z cos(2k+ 1)n(p = ., sin(2k + Do
T ar1 T T2k+1 4T 2k+ 1

a=1 =1

))f.q(t) k(e + - (Z g, cos(Zat Dk, t cos(2a+ 1)mk,t 3 Z - sin(2a + 1)7Tkrt)

2a+1 2a+1

a=1
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(ZOO - cos(2k+1)me ZOO « sin(2k+ 1)11:4)) (Z * cos(2a+1)mkyt
N U k=1 720 2k41 a=1T 2a+1
* sin(2a+1)mkyt 1 ~ « cos(2k+1)ﬂw « Sin(2k+1)me (63)
— i Skl il s = SR i ol ik S i el k. &
Za 1 2a+1 ) + 41T (Zk—l 23 2k+1 Zk 1 “24 2k+1

)$q(O] = ¥* MG (kyt)6m ()

On further rearrangements and simplifications, one obtains:

1 o* cos(2]+1)nk t ,sin(2a + Dk, t c .
(1+ad (e + Z(Z 2j+1 ZTZ 2a+1 )(ZT3

k=1
cos(2k + 1)mep = ,sin(2k + 1)ngo cos(Za + Dk, t
2k + 1 2 T 2kr 1 (Z T 2a+1
i ,sin(2a + V)mk,t L L 1 i L cos(2k + Dy = ,sin(2k + Do
B 2ar1 2t LT 2kwd T 2k ¥ 1
a=1 k=1
F P + 2kq0" Z cos(Za + Dk, t Z , sin(2a+ D)mk,t
))én () a0 (g; + 2 ( T oa+1 T10 2at 1
Z cos(Zk + l)n(p c ., sin(2k + 1)7T(p Z cos(2a + 1)mk,t
X T2kl LT 2kt ( 2a+1
z . sm(2a + Dk, t Z cos(2k + Dre c ., sin(2k + Dme
T 2kt T T2kl LT 2k+1
a= =

. ) .2 cos(Za + Dk, t = , sin(2a+ D)kt
Dén(®) + (O + a0 (25 + — (Z e Z e i
- , cos(2k + Dme - , Ssin(2k + 1)7T(p cos(Za + Dk, t

D Q.

2k+1 TZO 2k + 1 T 2a+1
k=1 k=

- , sin(2a+ 1)mk, t cos(Zk + 1)7r<p = , sin(2k + )me
ZT” 2a+1 (Z T 2k+1 L™ 2k+1

a=1 k=1

. cos(2a+1)nkt - .
D)én(6) + a0 Z [Ceo + Z(Z =

q= 1q¢n j=1

sin(2a + 1)mk,t Z cos(Zk + 1)7r<p = , sin(2k + 1)7r<p Z
T Zar1 ) k1 4T 2k+t (

cos(2a+ mk,t i ,sin(2a + D)nk, t Z cos(2k + 1)1T<p - .
2a+1 6T 2a+1 27 kvt ‘s

a=1 k=1

sin(2k + Dre__ .. ) + 2k Z cos(Za+1)nkt i ., sin(2a+ V)mk,t
kr1 Do+ 2k (e + 2( T 2a+1 0T 2a+1

Z cos(2k + 1)7'r(p c , sin(2k + 1)7'[(p Z cos(2a + Dk, t
X T2kl LT 2kt ( T 2a+1

Z . sm(2a + Dk, t Z cos(Zk + 1)n(p = ., sin(2k + Do
4T 2a+1 2 'am T2kl LT 2k+1

a=1 k=

))géq(t) K (e + - (Z cos(2a + Dk, t Z - sin(2a + 1)nkrt)

2a+1 2a+1
a=1
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(ZOO - cos(2k+1)me ZOO « sin(2k+ 1)11:4)) (Z * cos(2a+1)mkyt
N U k=1 720 2k41 a=1T 2a+1
* sin(2a+1)mkyt 1 ~ « cos(2k+1)n’(p « Sin(2k+1)me (64)
— i Skl il s = SR i ol ik S i el k. &
Za 1 2a+1 ) + 41T (Zk—l 23 2k+1 Zk 1 “24 2k+1

)$q(O] = ¥* MG (kyt)6m ()

On further expression of equation (65), one obtains:

E.(t) + 2k, a0 (e, + = (z , cos(2a + Dk, t Z - sin(2a + )7k, t)(z

© 2a+1 2a+1
cos(2k + 1)mep c ., sin(2k + l)mp Z cos(Za + Dk, t i .
2k +1 2T ok 1 ( T 2a+1 f1a
k=1 a=1
sin(2a + )rk,t - , cos(2k + Do - ., sin(2k + Dme
2a+1 Z Ukt 1 T zkv1 OO

. cos(Za + Dk, t - ,sin(2a + )mk,t
(Qn(1— 0" (e + (Z D

Za+1 2a+1

a=1

= ,Cos(Zk + Dme = ,Sin(2k + Do 1 < ,cos(2j + Dmk,t
e DRl

4 2k+ 1 T 2k 1 L 2a+ 1
- sm(Za + Drk, t cos(2k + l)ngo - ,sin(Zk + Dme
Z T zat1 (Z T 2k+1 o1 DT
a=1 k=1
K2q0" cos(Za + Dk, t c , sin(2a+ D)mk,t
ra6 (et o (2 T a1 Z 8T k1 (Z
cos(2k + 1Vme c ., sin(Zk + 1)7r<p cos(2a + Dk, t
2k+1 LT 2k+1 _(Z 2a+1 ZEZZ
sin(2a + 1)k, t - , cos(Zk + Dme < , sin(2k + )me
2a+1 Z T S T T a0
a6 i [(eo + (Z cos(Za + Drk,t i . sin(2a + 1)nk,t)(§: -
L 2 - 2a+1 2a+1 L
cos(2k + Vme c ,sin(2k + 1)7T(p cos(Za + Dk, t c .
2k+1  Li 't 2k+1 _(Z T 2a+1 ZT6
k=1 - 2 a=1
sin(2a + 1)k, t ,cos(2k + Do .sin(2k + Dme__ ..
2at1 Z T okv1 LT akr1 DNOF

cos(2a + Dk, t - , sin(2v+ Dk, t cos(2k + Dre
2k, (&7 + 2 (Z - Z Tlo— 55 N Z

- 2a+1 2a+1 o 2k+1

< , sin(Zk + )me cos(2a + Dk, t c , sin(2a+ D)mk,t
. | o St D,

2k+1 - 2a+1 4 2a+1
a=
cos(2k + 1)7T(p c . sin(2k+ Dme__ . 1 < .
+(Z R I T AR IR T
k=1 a=1
(2a+D)mhyt . sin(a+Dmkyt . COs@ktD) o
% - Za 1 Eq %)(Zk 1T % Yic=1 T30
sin(2k+1)me * cos(2a+1)mkyt o « sin(a+1)mk,t 1
e T (Za 1T o~ 2ami T )t (65)
- (2k+1) « sin(2k+1) .
(Zk 1T % Zk:l T2 sin 2k+1 mp))fq(t)] ¥ MgSm(krt)sm(‘p)
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Applying the modified asymptotic method of Struble, equation (65) can be re-expressed as:

€n(t) + Wi (1) = 0 (66)
for the homogeneous case

Hence, the entire equation becomes:

Ea(0) + 0Fn(t) = ¥ Mg (ke )5 () (67)
Where,
Wn = Q= 50— (B0 (66 + 1 Ty 77 200 = By T D) .
—k2a0" (g5 +— (Tiy *—”“j,fj?”“’—& T D)) 0

Which gives the modified frequency representing the frequency of the free system.
Rewriting equation (67), one obtains

En(t) + W&, (1) = W*MgS,,(5)[Sing, (t) + Apcospmt + B,sinhe,,t + Cpycoshep,,t] (69)

Making use of the procedures applied to solve equation (59) earlier, one obtains
Y*Mg&m
gn (t) - H [(¢m + wn)(¢m51nwnt - wn51n¢mt) Amwn(¢m + a)n)(COS¢m

—coswpt) — By (92, — w2) (¢ sinw, t — wy,sinh,,t) + Cw, (PZ — w?)(coshe,,t (70)
—coswyt)]
On making use of equation (5)
o o Y*Mgdm .
W(x,y,t) = ij:l Ywm=1 #ﬁp) [(¢m + 03) (PmSinw,t — W,sinpmt) — A w, (P,
+w2)(cosP,t — cosw,t) — B (P2, — w2) (Pp,sinw, t — a)nsinhqut) + Cpwp, (P2
—w?2)(coshg,,t coswnt)](smz—x +A4; jmCOS ~ Sim e + B; msmh X + Cim (1)
cosh—x) (sin (me + Awmcos y + mesm y + Cwmcosh Swm y)

Represents the transverse displacement response to a moving mass of an orthotropic rectangular plate.

4. ILLUSTRATIVE EXAMPLES
4.1 Orthotropic Rectangular Plate with Clamped at All Edges

For an orthotropic rectangular plate with clamped at all edges, the boundary conditions are given byplate is simply
supported at x = 0, x = L, and elastically supported at y = 0, y = L,, the boundary conditions are expressed below:

W(O,y,t) =0=W(Lyyt), Wkxyt)=0=W(x,Ly,t) (72)
a a a a
aW(O,y, t)y=0= aW(Lx,y, t), EW(X, 0,t)=0= aW(O,Ly, t) (73)
Thus, for the normal modes
(jm(o) =0= (jm(Lx): (wm(o) =0= qwm(Ly) (74)
im0 = 9m(lx)  wm(0) _ A _ 9%wm(ly)
ax 0= ox ' ay 0= ay (75)
For uniformity, our initial conditions take the form of
W(x,y,0) = 0 = &0 (76)

Jat

Adopting the boundary conditions in equations (72) to (75) and the initial conditions given by equation (76), it can be

shown that:
sinh{ i, —sind; cos{ jm—cos{;
Apm = R =R (77)

cos{jm—coshjm sin{jm+sinhdm,

sinh{ym—sindym cos{ym—coslywm
Aym = == : (78)
cos{ym—coshlym sin{yym+sinh{yym
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In the same vein, we have:
_ sinh{y,m—sin{y, _ cos{m—cosim (79)

m cos{;m—coshly,  siny+sinh{y,
and
Bim=-1, Bym=-1, = Bp=-1 Cn=—"4m Cwm=—"4wm, =Cnh=—-4An (80)

From equation (79), one obtains
cos(,,cosh(,, =1 (81)

represents the frequency equation for the dynamical problem, such that
¢, =4.73004, {, =7.85320, {3=10.9951,.. (82)

In reference to equations (79), (80) and (82) in equations (61) and (71), one gets the displacement response to a
moving force and a moving mass of orthotropic rectangular plate on bi-parametric elastic foundation respectively.

4.2 Orthotropic Rectangular Plate with Clamped Elastic Boundary Conditions
For the clamped end, both deflection and slope varnish. Thus, when the orthotropic plate is both clamped at x =
0 and y = 0 and elastically supported at x = L, and y = L,,, the conditions are of the form:

w(0,y,t) = W'(0,y,t) (83)

at the end x = 0 and
W'"(Ly,0,t) — W' (Ly,0,t) =0=W""(L,,0,t) + @, W(L,,0,t) (84)
attheend x = L,

In the same, we have
W(,y,t) =W'(0,y,t) (85)

attheend y = 0 and
W' (0,Ly,t) — ;W'(0,Ly,,t) = 0 =W"(0,Ly,t) + p,W(0,L,,¢t) (86)
attheendy =L,

Thus, for normal modes, we have:
{im(0) =0 =hn(Ly), Cwm(0) =0 = {4m(Ly) (87)

attheend x = 0andy = 0 and
Z]’;n (Ly) — (plc;m(l‘x) =0= ]’;;I(LX) + (pzzjm(l‘x)

" ! nr (88)
(wm(Ly) = ®1Cwm (Ly) =0= (wm(Ly) + (pzzwm(l‘y)
Also
m(Lx) = @1¢m(Lx) = 0 = {p/ (Ly) + @20m(Ly) (89)
r’r’L(Ly) - (plzr’n(Ly) =0= Tlrlll (Ly) + <p2(m(l'y)
Using equations (87) and (88), it can be shown that at x = 0,
Aj = _ij' Bjm =-1, Aym=-—"Cym, Bym=-1 (90)
Also,
Ay =—Cp, Bp=-—1 (91)
and
B = {I{—;"[sinijm+sinh(jm]+<p1[cosg'jm—cosh(jm] _
m {I{—;n[cos(jm+cosh{jm]—(p1[cos{jm+cos(jm]

3 (92)

%[Cos(jm—sin( m]+@2[Sinh{ jm—sing jm]
X

3 = —Cjm
m. . .
—Z—§[51n(jm—51nh§jm]+¢1[cosijm—cosh(jm]
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Similarly, we have:
S sinGuum+sinhCwm] + 91 [€0SGum—coshGym]
me = Swm
Ly 2T -[coswm+coshlym]—-@1[cos{wm+cosdwm]

3
EHC0sCum=sinum 1+ [SinhGym=sintum]

CWTTI

<2Vm [sin{wm—sinh{ywm]+¢@1[cos{ywm—coshlym]

In the same vein, we have:

z—m[sin{m+sinh{m]+<p1[cosfm cosh{m]
By, =7

m[cos('m+cosh('-m] <p1[cos{]m+cos{m]
gf"[cos(m sin{m ]+ @2 [sinh{py—sindy,] (94)

73
T = =l
L—3[sm{m sinh{m,]+@1[cos{m—coshlm]

and
(—m[sin{m+sinh{m] +¢@1[cos{;y—coship]

m zrj’:[cos{m+cosh{m] <p1[cos{]m+cos(m]

i—g[cosfm—sin(m]ﬂpz [sinh{pym—sindp,] (95)
? _
_i—’é‘[sin{m—sinh(m]ﬂpl[cos{m—cosh{m]

From equation (93), one obtains:
tan{,, = tanhd{, (96)

Which is termed the frequency equation for the dynamical problem, such that
{, =3.927, {,=7.069, {;=10.210,.. (97)

Applying equations (91), (94), (95) and (97) in equations (61) and (71), one gives the displacement expression
response to a moving force and a moving mass of orthotropic rectangular plate on bi-parametric elastic foundation
respectively.

5. DISCUSSION OF THE ANALYTICAL SOLUTIONS

For this undamped system, it is expedient to investigate the phenomenon of resonance. So from equation (61), it
is obviously shown that the orthotropic rectangular plate with elastic end conditions and on constant elastic foundation and
traverse by moving distributed force with constant speed reaches a state of resonance whenever.

Om = Qnn (98)

While equation (71) illustrates that the same orthotropic rectangular plate with elastic end conditions and on
constant elastic foundation and traverse by moving distributed force with constant speed reaches a state of resonance when:

Where,
1 . x Cos(2k+1 7 SinZk+1
Wy = Qpp — K(Q%na@ (g6 + (Zk 17T cos(2k+1)mp k=1 T Sm(2k+1)”‘l’
nn 100)
2 1 © N cos(2k+1)n:<p » sin(2k+1)me (
—kia0®”(eg + - (Xk=1 T23 T ki1 Yht1 T2s 2k+1 )

Comparing equations (84) and (85), one obtains

1 « *cos(2k+1) ® *sm(2k+1) 0]
On =ﬂnn[1——ﬂz (020" (6 + - (B 77 22— 30 72,”1”) (101
% * cos(2k+1)11:<p 0 « sin(Zk+1)me
—k}a0*(eg + (Zk 1T kel k=1 T4 k1 — =

6. GRAPHS OF THE NUMERICAL SOLUTIONS
To expatiate the analysis presented in this work, orthotropic rectangular plate is assumed to be of length L, =

0.923m, breadth L, = 0.432m the load velocity ¢ = 0.8123m/s and ¢ = 0.4m.The results are presented on the various
plotted curves below for both clamped end conditions (classical end condition) and clamped elastic end conditions (non-
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classical end condition).

Figures 6.1 and 6.2 display the effect of flexural rigidity of the plate along x-axis D, on the deflection profile of
orthotropic rectangular plate with Clamped-clamped end conditions under the action of load moving at constant velocity
in both cases of moving distributed forces and moving distributed masses respectively. The graphs show that the response
amplitude decreases as the value of flexural rigidity D, increases.
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Figure 6.1: Shows displacement Profile of Orthotropic Rectangular Plate with Varying D, with Clamped-clamped
end conditions and Traversed by Moving Force
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Figure 6.2: Shows displacement Profile of Orthotropic Rectangular Plate with Varying D, with Clamped-clamped
end conditions and Traversed by Moving Mass

Figures 6.3 and 6.4 display the effect of flexural rigidity of the plate along y-axis D,, on the deflection profile of
orthotropic rectangular plate with Clamped-clamped end conditions under the action of load moving at constant velocity
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in both cases of moving distributed forces and moving distributed masses respectively. The graphs show that the response
amplitude decreases as the value of flexural rigidity D,, increases.
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Figure 6.3: Shows displacement Profile of Orthotropic Rectangular Plate with Varying D, with Clamped-clamped
end conditions and Traversed by Moving Force
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Figure 6.4: Shows displacement Profile of Orthotropic Rectangular Plate with Varying D, with Clamped-clamped
end conditions and Traversed by Moving Mass
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Figures 6.5 and 6.6 display the effect of flexural rigidity of the plate along x-axis D, on the deflection profile of
orthotropic rectangular plate with Clamped elastic end conditions under the action of load moving at constant velocity in
both cases of moving distributed forces and moving distributed masses respectively. The graphs show that the response

amplitude decreases as the value of flexural rigidity D, increases.
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Figure 6.5: Shows displacement Profile of Orthotropic Rectangular Plate with Varying D, with Clamped elastic

end conditions and Traversed by Moving Force
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Figures 6.7 and 6.8 display the effect of flexural rigidity of the plate along y-axis D,, on the deflection profile of
orthotropic rectangular plate with Clamped elastic end conditions under the action of load moving at constant velocity in
both cases of moving distributed forces and moving distributed masses respectively. The graphs show that the response
amplitude decreases as the value of flexural rigidity D,, increases.
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7. CONCLUSION

The dynamic influence of foundation stiffness
on rectangular structural plate with constant bi-
parametric elastic foundation with simple elastic end
conditions has been examined in this research article.
The closed form solutions to partial differential model
having variable and singular coefficients of the
orthotropic rectangular plates has been obtained for both
cases of moving force and moving mass using the
technique adopted by Shadnam et al., [11] which was
adopted to remove the singularity in the governing fourth
order partial differential equation and thereby
transforming it to a sequence of second order ordinary
differential equations. After making use of asymptotic
technique of Struble and Laplace transformation, the
analytical solution is obtained. The solutions are then
interpreted. From the interpretations, it was evidence that
for the equal natural frequency, the critical speed for
moving mass problem is smaller than that of moving
force problem. Hence resonance is achieved earlier in
moving mass system than in the moving force system.
The results in the plotted curves show that increase in
rotatory inertia correction factor, R, , foundation
modulus K, and shear modulus G, resulted to decrease
in the amplitudes of the orthotropic rectangular plates for
both cases of moving force and moving mass problems.
It is also depicted in the curves that the response
amplitude of moving mass problem is higher than of
moving force problem which indicates that resonance is
reached earlier in moving mass problem than in moving
force problem of flexural rigidity influence on dynamic
response of orthotropic rectangular plate resting on
constant elastic foundation.
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