〇 OPEN ACCESS

Integration Modeling for Personalized Therapy Including Current Medical Administration and Traditional Chinese Medication for Lupus Nephritis

Wenqin Li¹, Xiaonan Ying ${ }^{2,}$, Yan Wang ${ }^{3}$, Biaoru Li4, Hongliang Hu ${ }^{5}$
${ }^{1}$ Department of Chemistry, University of California, Irvine, CA 92697, USA
${ }^{2}$ Candidate for Master of Science in Bioinformatics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
${ }^{3}$ Department of Internal Medicine, China Petroleum Kuerla Hospital, Kuerla, XinJiang, 841000, P.R. China
4MD/Ph.D, Department of Pediatrics and GA Cancer Center Children Hospital at GA Augusta, GA 30912, USA
${ }^{5}$ Institute of Traditional Chinese Medicine, Fudan University, 220 Handan Rd, WuJiaoChang, Yangpu Qu, Shanghai Shi, China

*Corresponding author: Biaoru Li

| Received: 09.03.2019 | Accepted: 19.03.2019 | Published: 30.03.2019
DOI: $10.36348 / \mathrm{sijb} .2019 . v 02 i 03.001$

Abstract

The damage caused by the lupus nephritis to the patient's kidney was very little studied for treatment module; however, we have the understanding the disease involving in the kidneys by an immune complex glomerulonephritis. Human genomics have been decoded since 2004, it should give clinical scientists and medical doctors a new scenery to develop some new treatment modules to cure these kinds of patients. Here we used a group of genomic data from lupus nephritis to combine the modern medicine knowledge and Traditional Chinese Medicine (TCM) so that an integration module will be subject to the clinical field. The integration model is primarily relied on a comprehensive regulation mechanism of system biology including network, topology and gene-drug interaction database. In this manual we first study the role using genomic expression signature from several databases of clinical lupus nephritis, and then we combine current medications with their immune suppress treatment and TCM with their theory and medication in order that the integration model was eventually established. In near future, we will extend a second-generation model based on the module by using a set of clinical genomic data from different patients such as individual patient genomic data, each patient symptom, laboratory results.
Keywords: Lupus nephritis, gene expression signature, topology, integration medicine, traditional Chinese medicine personalized therapy
Copyright © 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (Non-Commercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

The lupus nephritis (LN) is a severe kidney disease caused by an immune complex which results in glomerulonephritis [1]. The disease will finally develop renal function failure but very little measurement to control the disease deterioration [2]. Since 2004 when human genomics are decoded, it gives an expectation for clinical scientists and medical doctors to treat the uncured disease suffered by patients. Furthermore, because traditional Chinese medicine (TCM) has several thousand's years practice to treat the uncured disease, it will be possible that recent LN studies have been largely reported by mechanism of "Yin" and "Yang" related to T-cells and cytokines regulation in TCM. Moreover, immune suppress medication has been increasingly studied by their cytokines and gene regulation to treat the disease. Foremost, system biology and gene-drug interaction databases are emerging, an integration model based on genomics will be possible for combination employment of different medication methods in clinics.

Since the integration model is primarily developed by a group of genomic data, here we first studied several genomic databases from LN to develop a module for the integration model. Secondly, some comprehensive pathways are studied to LN network mechanism so that we further set up a network construction by genomic expression signature obtained from public GEO database. Finally, we combine LN networks with their medicine treatment and LN related to cytokine regulation with their TCM medication, and thereby this integration modeling will be a combination to treat Lupus Nephritis (LN) from different mythologies. They should better than lonely method to treat LN such as only immune suppress to treat LN or by only TCM to administer LN. This study will improve our understanding of LN system biology in the uncured disease. The manual purpose will provide a foundation for effective treatment to administer these kinds of uncured diseases. In near future, we will continue to develop second-generation module with a set of clinical genomic data from different patients and their information relied on each patient symptom and
laboratory results. our final purpose is that the feasible module can be used MD to prescribe drugs according to personal genomics information, patient symptom, different lab results.

MATERIALS AND METHODS

Clinical Genomic Sources

There are several public LN genomic databases published in Gene Expression Omnibus (GEO). After these database in GEO are carefully studied (all studies of LN public genomic database were omitted here), we mainly select GSE99967 from GEO for our study model even if combination was used to other information from the LN genomics such as GWAS and other information. The GES99967 have used Affymetrix Human Gene 2.0 ST Array to study LN genomics [3]. Furthermore, these public GEO databases have three advantages and characteristics over than other LN genomic data: (1) RNA was isolated from whole peripheral blood of active SLE patients (systemic lupus erythematosus) with their transcriptomic profiling including LN patients; (2) clinical criteria from patients follow up 4 or more of the revised in 1997 by American College of Rheumatology; (3) 38 patients with 17 controls including active patients with and without LN which can be used to identify potential genomic expression signature (GES).

Topology analysis for personalized therapy modeling

After we analyzed the GEO database to combine other information such as GWAS, if we want to study a disease network, as our previous reports [4], we should first study this disease topology model. In details, the specific GES (Supplemental Table-1) was input into Cytoscape to observe abnormal expression from these disease genomic characteristics. Based on our previous publications, we selected three indexes, Betweenness Centrality (BC) which is short pathway between two proteins (node), Connectivity Degree (CD) which is a protein linking other protein number and Cluster Coefficient (CC), which means side-way to a protein. Furthermore, the topology formula selected in the network combined to mTORC pathway (Supplemental Table-2), which is an acute and chronic kidney disease, lay the foundation for the establishment of an operational therapeutic targets.

After we studied the GES topology, the modified gene expression profile is also input into a drug-bank in the Drug Genomic Interaction Database (DGIdb) to define targeted therapeutic drug and the targeting molecule [5]. As our previous researches, we also study an index from each compound with higher BC and lower CC and CD. These targets indicate as a higher targeting for abnormal cells with a lower toxicity for normal cells. Eventually, a list of compounds from drug-bank is established to link genes, especially including FDA-approved drug and molecular therapeutic antibodies and small molecule therapeutics and radiation molecules. This led to the establishment of
configuration maps and drug response networks based on the abnormal genome expression characteristics obtained from LN.

Topology analysis for modern medicine treatment

According to several decades efforts from different laboratories, three pathways (Supplemental Table-3) have been discovered for chronic inflammatory response networks, those are, nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-кB), hypoxia-inducible factors-1 alpha (HIF-1 α) pathway and signal transducer and activator of transcription (STAT) pathway [6]. When patients become chronic inflammation such as LN, the three pathways with their transcriptional factors will become major factors to involve in the diseases.

Moreover, routine clinical health care focus on a corticosteroid (such as prednisone), or suppress immune system such as cyclophosphamide, mycophenolate mofetil or hydroxychloroquine for people who have LN diseases. Because most of LN have high blood pressure, Lupus nephritis can cause high blood pressure in some people. We may need more than one kind of medicine to control patient blood pressure including ACE inhibitors, diuretics, beta blockers or calcium channel blockers. The ACE inhibitors and other drugs may help protect your kidneys, and diuretics help your kidneys remove fluid from your body. Accordingly, all medication related to their molecules and cytokines regarding immune suppress and anti-high-blood pressure were established a linker into the three pathways with their transcriptional factors as described above.

We apply for the list of drugs with targeting genes to combine into the network including three pathways and a list of drugs to administer their treatment. Finally, genes with their drugs still require higher BC with lower CC and CD to establish medication module and drug response networks based on LN.

Topology analysis for traditional Chinese Medicine

Zhuangzi (1020-1078 AD), a famous
Chinese philosopher, had interpreted that there are two elements: "Yin" and "Yang" establish a material force in the universe [7]. According to the famous Chinese philosophy: "Yang" and "Yin" interact each other to complete a "Great Ultimate" also called as "Tai-chi diagram". As current researches, Yang, the "hot" point is inflammation peak (enlargement of yang area) and Yin, "cool" point is regulatory of inflammation (enlargement of yin area). After several decades efforts, inflammation pathways regarding cytokines have been extensively studied in the "Tai-chi diagram" [8] so that we set up topology analysis from inflammation regulation and autoimmune response including cytokines expression in Yin and Yang (Supplemental Table-4).

Moreover, TCM with their treatment will be used for lupus nephritis patients by Chinese Diagnosis Model [9]: A. liver heat (liver fire) which is patient tongue red, the pulse is wiry and rapid; B. spleenkidney yang deficiency by which patient has night sweats, afternoon fever, chronic fatigue, and pain in the lower back and knees; C. liver-kidney yin deficiency which is face and tongue dark and dull; D. combination with some symptom as above three types. We also apply for a list of traditional drugs with their targeting cytokines as "Tai-chi diagram" from cytokines and Tcells to set up the new network including Yin-Yang pathways and a list of TCM treatment. As topology described above, higher BC with lower CC and CD establish TCM with their treatment including drug response based on Chinese Diagnosis Model.

Topology analysis for integration module

As eventual combination for integration model, we merge all networks from genomic data including their therapeutic targets; three pathways with their immune suppress and symptom such as high blood pressure; "Yin-Yang" as "Tai-chi diagram" related cytokines with their TCM and their medication (all data as supplemental_1_2_3_4).

Support Analysis

In order to support the module of the selected pathways for targeted drugs and a targeted molecule therapy for personalized therapy including current medication and traditional Chinese medication, a python scripts to simulate to assay a drug (Supplemental Table-6). The python scripts were established as our previously reported [10], they are used to simulate the anti-LN drugs to support the module and analyze the matched therapeutic targets including modern medicine and TCM in the LN network for targeted gene expression and the discovered therapeutic molecules. The design principle is that the abnormal inflammation cytokines obtained by network with a dynamic model based on differential equations including qualitative relationships and directed responses as our previous report. The scripts will verify the efficacy of anti-LN drugs for LN patients.

RESULTS

Construction and topology establishment from GES

Recently, therapeutic targeting is going to focus on topology based on GES to discover drug targeting, small molecule targeting, Ab targeting and RNA-interfering therapy. Our laboratory has spent more than a decade to study different topology parameters relied on our experimental assay such as quantitative rtPCR and Western blot [11]. Although most of parameters can be used in different cell-lines, animal and human beings in different lab [12-15], as our previous studies, both BC and DC majorly play an important role in primary cells from clinical specimens
while DC is likely to be toxic for normal cells such as normal lymphocytes due to their system-wide influence, thus we firstly study GES (as Supplemental Table-1) with higher BC and low DC/CC from the GEO data. The high $B C$ value indicates a significant targeting node from abnormal cells and low DC and CC means very few branches without their system-wide influence to cause normal cell disfunction [16]. Base on the conception from our long-term data analysis and experimental support, although 21 GES from LN within SEL was obtained from GEO data, we need further refine a construction for feasible therapeutic targets. After we input mTORC (as Supplemental Table-2) and chronic inflammation pathways into Cytoscape, a construction from both LN GES and mTORC/inflammation pathways was established as Fig1. The uncovered nodes (or genes or proteins) were loaded into the GDIdb to mine drugs, small molecule and other molecular therapy agents. The resulting node and drug candidates with their index (BC, DC and CC) were configured by the construction map as Fig-2. As the Fig-2 shown, hydrochlorothiazide was predicted to inhibit CA1 which can cause renal high pressure although the drug indicates anti-chronic inflammation in the disease GES.

Topology and results of analysis for current medicine treatment

Clinical care for LN have routinely employed prednisone, cyclophosphamide, mycophenolate mofetil, hydroxychloroquine for patients who have LN diseases. Because LN have complex symptoms such as high blood pressure, ACE inhibitors, diuretics, beta blockers or calcium channel blockers may help protect your kidneys and/or diuretics help your kidneys remove fluid from your body. According to chronic inflammatory pathways (as Supplemental Table-3) and drugs targeting genes and cells, we apply for the list of drugs with targeting genes and chronic inflammatory pathways to set up the network for topology constructs. As GES therapeutic targets described above, genes with their drugs require higher BC with lower CC and CD to establish the resulting networks as Fig-3. The results constructs revealed that prednisone inhibiting Cox2, cyclophosphamide, mycophenolate mofetil, hydroxychloroquine blocking T-cells. For example, after block of cyclophosphamide, chronic inflammation will be inhibited in the constructs. In order to study clinical complication for drugs responses in the dynamic network, we also can discover some drugs in the constructed topology with the disease complication as Fig-3.

Topology analysis and results for traditional Chinese Medicine

Traditional Chinese medicine (TCM) for lupus nephritis have a special Chinese Diagnosis Model according to Chinese medication theory: "liver heat", "spleen-kidney yang deficiency", "liver-kidney yin deficiency" and combination with above three types.
＂Tai－chi diagram＂indicated the＂hot＂point as Yang is inflammation peak（enlargement of yang area）and ＂cool＂point as Yin is regulatory of inflammation （enlargement of yin area）．As Supplemental Table－4 and Fig－4，inflammation pathways including their cytokines and T－cells have been extensively studied in the＂＂Great Ultimate＂so that we set up topology analysis of inflammation regulation and autoimmune response including cytokines expression in Yin and Yang．As topology described above，higher BC with lower CC and CD require traditional Chinese medicine with their treatment including drug response based on Chinese Diagnosis Model．As Fig－5，JSW（金贵肾气丸）can increase＂spleen－kidney Yang function＂which is constructed by＂Great Ultimate＂related inflammatory pathways．

Construction and topology analysis for integration model

After we achieved first construct from genomic data with their therapeutic targets，second construct from current LN mechanism with their immune suppress treatment，third construct from TMC mechanism with their treatment，as Fig－6，we merged all nodes within configuration，an integration model with their construction was established as Fig－7．The resulting node and drug candidates with their index（BC，DC and CC）were discovered by the construction map as

Supplemental Table－5 and Fig－7．As the Fig－7 shown，if we have a group of GES data，we can predict a comprehensive treatment，including current feasible immune suppress and anti－symptom administration， targeting treatment and traditional Chinses medication， which can block LN with their different complicated symptoms such as renal high pressure and other chronic inflammation．

Python Analysis and Results

In order to support the integration model for these selected pathways and their targeted drugs and a targeted molecule therapy including their current medication and traditional Chinese medication，a python scripts which was established in our lab are used to simulate the anti－LN drugs in the module and analyze their therapeutic targets within modern medication and traditional Chinese medication in the construct network （as Supplemental Table－6）．As Fig－8 and Table－1，if genomic data as GES was harvested in the manual， cyclosporin－A is better than cortisone to remodel immune regulation to the therapeutic targets；SJGHDH（参 苠 桂 附地黄汤）is better than other traditional Chinese medication；hydrochlorothiazide is better than ACE inhibitors，beta blockers and calcium channel blockers because this GES data has higher CA1 expression．

An integration modeling and results

name	BetweennessCentrality	DegreeCentriality	ClusteringCoefficient
Cyclosporin＿A	5.015625	1	0
CTX	5.015625	1	0
CYCLOTHIAZIDE	5.375	1	0
CHLORTHALIDONE	5.375	1	0
SODIUM＿CARBONATE	5.375	1	0
QUINETHAZONE	5.375	1	0
METHYCLOTHIAZIDE	5.375	1	0
HYDROFLUMETHIAZIDE	5.375	1	0
HYDROCHLOROTHIAZIDE	5.375	1	0
DIAZOXIDE	5.375	1	0
BENZTHIAZIDE	5.375	1	0
BENDROFLUMETHIAZIDE	5.375	1	0
SJGHDH	7.203125	2	0
DHY	7.203125	2	0
DBW	7.203125	2	0
SJDH	7.203125	2	0
JJDH	8.1640625	1	0
GZDH	8.1640625	1	0
WZXZ	7.3359375	1	0
JSW	7.3359375	1	0

LEGEND

Fig-1: A Cytoscape platform was established by mTORC/inflammation pathways, GES and compounds mined by GDIdb

Fig-2: The construction was defined by Cytoscape platform depending on mTORC/inflammation pathways, GES and compounds mined by GDIdb and the configuration were used for the topology analysis such as BC, DC and CC. For example, large node size means larger BC value and DC large means color dark from red, pink, yellow, blue, green to dark

Fig-3: The construction was defined by Cytoscape platform depending on mTORC/inflammation pathways, immune suppress with their compounds mined by GDIdb and they were used for the topology analysis such as BC, DC and CC as Fig-2; the three pathways are activated B cells pathway ($\mathrm{NF}-\kappa \mathrm{B}$), hypoxia-inducible factors-1 alpha (HIF-1 α) pathway and signal transducer and activator of transcription (STAT) pathway

Fig-4: "Tai-chi diagram" indicates Yang, the "hot" point is white from smaller to larger and Yin, "cool" point is dark from regulatory of inflammation (enlargement of yin area) which is 'yang' opposite. Inflammation pathways regarding cytokines from "Tai-chi diagram" were used to study traditional Chinese medication

Fig-5: The construction was defined by Cytoscape platform depending on immune regulation and autoimmune pathways including their cytokines and T-cells. They were configured as Yin and Yang including their traditional Chinese mediation. Topology such as BC, DC and CC. were used to study analysis. For example, large node size means larger BC value and DC large means color dark from red, pink, yellow, blue, green to dark

Fig-6: The diagram indicated that an integration process including genomics data with their GES for personalized therapy, chronic LN inflammation with their medication, traditional Chinese medication with Yin and Yang related cytokines and T-cell pathway

Fig-7: The construction indicated that an integration model including genomics data with their GES for personalized therapy, chronic LN inflammation with their medication and traditional Chinese medication with Yin and Yang related cytokines and T-cell pathway

Fig-8: The python analyses support that an integration results such as CA1 will increase inflammation and high blood pressure although cyclothiazide can decrease high blood pressure and also can decrease inflammation (A); cyclosporin-A can inhibit T-cell activity related autoimmune response (B) and SJGHDH can increase Yin and Yang to treat LN related spleen-kidney yin deficiency and yang deficiency (C) from this GES pattern

Supplemental Result

Source	Target	Interaction
INS	INSR	+
INSR	IRS	+
IGF	INSR	+
INSR	IRS	+
IRS	PI3K	+
PI3K	PIP3	+
PIP3	PDK1	+
PDK1	AKT	+
AKT	TSC1/2	-
TSC1/2	Rheb	-
Rheb	mTORC1	+
mTORC1	HIF1-alpha	+
HIF1-alpha	VEGF	+
mTORC1	S6K1/2	+
S6K1/2	elF4B	+
S6K1/2	S6	+
mTORC1	4E-BP1	-
4E-BP1	elF4E1	-
mTORC1	ATG1	-
Rapamycin	mTORC1	-
mTORC1	PKC	+
BRAF	mTORC1	-
Stress	LKB1/STRAND/MO25	+
LKB1/STRAND/MO25	AMPK	+
AMPK	TSC1/2	+
TNF-alpha	IKK	+
IKK	TSC1/2	-
AMP	AMPK	+
Metformin	AMPK	+
AICAR	AMPK	+
Hypoxia	REDD1	+
REDD1	TSC1/2	+
INS	INSR	+
INSR	Ras	+
IGF	INSR	+
INSR	Ras	+
DOXYCYCLINE_CALCIUM	MMP8	-
BENDROFLUMETHIAZIDE	CA1	-
BENZTHIAZIDE	CA1	-
CEFDINIR	MPO	-
CYCLOTHIAZIDE	CA1	-
DIAZOXIDE	CA1	-
ETHINAMATE	CA1	-
HYDROCHLOROTHIAZIDE	CA1	-
HYDROFLUMETHIAZIDE	CA1	-
MELATONIN	MPO	-
METHYCLOTHIAZIDE	CA1	-

QUINETHAZONE	CA1	-
SODIUM_CARBONATE	CA1	-
CHLORTHALIDONE	CA1	-
DORZOLAMIDE	CA1	-
DOXYCYCLINE	MMP8	-
SULPIRIDE	CA1	-
TOPIRAMATE	CA1	-
METHOCARBAMOL	CA1	-
BRINZOLAMIDE	CA1	-
CHLORAL_BETAINE	ARG1	-
ZONISAMIDE	CA1	-
DOXYCYCLINE_CALCIUM	MMP8	-
IL1	MMP8	+
CEFDINIR	MPO	-
IL6	MPO	+
CHLORAL_BETAINE	ARG1	-
T_cell	ARG1	-
CYCLOTHIAZIDE	CA1	-
CA1	Inflammation	+
IL6	gp130	+
gp130	JAK	+
JAK	STAT3	+
STAT3	ISRE/GAS	+
STAT6	ISRE/GAS	+
ISRE/GAS	Inflammation	+
SHP1	JAK	-
JAK	gp130	+
PIAS	STAT3	-
SUMO	STAT3	-
PTP	STAT3	-
ISRE/GAS	SOCS3	+
SOCS3	JAK	-
INF	JAK	+
JAK	STAT1	+
STAT1	ISRE/GAS	+
STAT3	STAT1	+
STAT6	STAT1	+
TNF	TNFR	+
TNFR	TRADD/TRAF2/5	+
TRADD/TRAF2/5	RIP	+
A20	TRAF6	-
A20	RIP	-
CYLD	RAF2/5	-
CYLD	IKK	-
IL1	IL1R	+
IL1R	IRAK1/4/TRAF2/6	+
IRAK1/4/TRAF2/6	Pellino	+
Pellino	TRAF6	+
TRAF6	TAB2/TAB1/TAK1	+
TAB2/TAB1/TAK1	IKK	+

IKK	NF-KB	+
NF-KB	Inflammation	+
Hypoxia	HIF1-alpha	+
HIF1-alpha	NF-KB	-
HIF1-alpha	Inflammation	+
COX2	Inflammation	+
NSAID	COX2	-
Cortisone	COX2	-
CTX	T_cell	-
Cyclosporin_A	T_cell	-
T_cell	IL6	+
T_cell	TNF	+
T_cell	IL1	+
T_cell	INF	+
IL6	Inflammation	+
TNF	Inflammation	+
IL1	Inflammation	+
INF	Inflammation	+
M1	T_cell	+
T_cell	T_TfH	+
T_TfH	BCL6_IL21	+
T_cell	IL12_IFN_gamma	+
IL12_IFN_gamma	Th1	+
Th1	IL2_IFN_gamma_TNF_alpha	+
IL2_IFN_gamma_TNF_alpha	Autoimmunity	+
IL2_IFN_gamma_TNF_alpha	Cellular_immunity	+
T_cell	IL6_TGF_beta	+
IL6_TGF_beta	Th17	+
Th17	IL17	+
IL17	Autoimmune_process	+
Th17	Yang	+
GM_CSF	M2	+
M2	T_cell	+
T_cell	IL12_TGF_beta	+
nTreg	IL10_IL35_TGF_beta	+
T_cell	IL2_IL4	+
IL2_IL4	Th2	+
Th2	IL4_IL5_IL13	+
IL4_IL5_IL13	Immuno_complex	+
IL10_IL35_TGF_beta	iTreg	+
iTreg	M1	+
iTreg	IL10_TGF_beta	+
IL10_TGF_beta	immune_regulation	+
IL10_TGF_beta	Yin	+
JSW	Yang	+
WZXZ	Yang	+
GZDH	Yin	+
JJDH	Yin	+
SJDH	Yang	+
DBW	Yang	+

DHY	Yang	+
SJGHDH	Yang	+
SJDH	Yin	+
DBW	Yin	+
DHY	Yin	+
SJGHDH	Yin	+
JWBT	Yang	-
JWBT	Yin	-
LGP	Autoimmune_process	-

DISCUSSIONS AND CONCLUSION

The lupus nephritis is a severe disease and it will eventually develop into renal function failure. Although current medication including current administration and current Chinese medication can be used to this kind of disease, they still cannot control the disease exacerbation very well. When human genomics have been decoded in 2004, it will produce a new hope for clinical scientists and medical doctors to treat the uncured disease. Here we first studied a group of LN genomic data to set up a construction and then we combined current medication and traditional Chinese Medicine treatment to configure this integration modeling.

Since the integration model is primarily developed by a group of genomic data, some comprehensive network mechanism with their treatment compounds, in the next step, we will further develop second-generation construction with a set of clinical genomic data from patients including patient symptoms, laboratory results and drug priority-order following the first-generation module. Finally, the feasible module will be used by medical doctor to prescribe drugs according to personal genomics information, patient symptom, different lab results. Theoretically, the feasible module should be better than lonely method to treat Lupus Nephritis by only current immune suppress medication or by only traditional Chinese Medication.

ACKNOWLEDGMENTS

Under the support of Dr. H. D. Preisler, we have set up different methods and models to analyze genomic profiles such as CD3, CD4 and CD8 from immune and tumor diseases related personalized therapy. This clinical application was previously supported by National Cancer Institute IRG-91-022-09, USA (to BL).

Mention of trade names or commercial products in this article is solely for the purpose of
providing specific information and does not imply recommendation.

Authors Contributions

WL analyze topology and quantitative network under guidance of BL, XY and BL modify bioinformatics fields including python scripts; YW give us clinical support to some drugs definition; BL conceived and designed the experiments.

Competing Interest Statements

The authors declare no financial interests.

REFERENCES

1. Ayoub, I., Nelson, J., \& Rovin, B. H. (2018). Induction therapy for lupus nephritis: the highlights. Current rheumatology reports, 20(10), 60.
2. Fulgeri, C., Carpio, J. D., \& Ardiles, L. (2018). Kidney injury in systemic lupus erythematosus: Lack of correlation between clinical and histological data. Nefrología (English Edition), 38(4), 380-387.
3. Wither, J. E., Prokopec, S. D., Noamani, B., Chang, N. H., Bonilla, D., Touma, Z., ... \& Boutros, P. C. (2018). Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: Clinical/pathologic associations and etiologic mechanisms. PloS one, 13(5), e0196117.
4. Li, B., Liu, G., Hu, H. L., Ding, J. Q., Zheng, J., \& Tong, A. (2015). Biomarkers Analysis for Heterogeneous Immune Responses of Quiescent CD8+cells -A Clue for Personalized Immunotherapy. Biomarkers Journal, 1:1(3).
5. Cotto, K. C., Wagner, A. H., Feng, Y. Y., Kiwala, S., Coffman, A. C., Spies, G., ... \& Griffith, M. (2017). DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic acids research, 46(D1), D1068-D1073.
6. Venkatesha, S. H., \& Moudgil, K. D. (2016). Celastrol and its role in controlling chronic diseases. In Anti-inflammatory Nutraceuticals and Chronic Diseases (pp. 267-289). Springer, Cham.
7. Wei-Ming, T. (1989). The continuity of being: Chinese visions of nature. na. Asian Traditions of

Thought. State Unviersity of New York Press, Albany, N.Y. USA, 67-78.
8. Liu, X., Fang, L., Guo, T. B., Mei, H., \& Zhang, J. Z. (2013). Drug targets in the cytokine universe for autoimmune disease. Trends in immunology, 34(3), 120-128.
9. Liu, C. Y., Wu, W. H., Huang, T. P., Lee, T. Y., \& Chang, H. H. (2014). A novel model for exploring the correlation between patterns and prescriptions in clinical practice of traditional Chinese medicine for systemic lupus erythematosus. Complementary therapies in medicine, 22(3), 481-488.
10. Zheng, J., Zhang, D., Przytycki, P. F., Zielinski, R., Capala, J., \& Przytycka, T. M. (2009). SimBoolNet-a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics, 26(1), 141-142.
11. Zhang, W., Ding, J., Qu, Y., Hu, H., Lin, M., Datta, A., ... \& Li, B. (2009). Genomic expression analysis by single-cell mRNA differential display of quiescent CD8 T cells from tumour-infiltrating lymphocytes obtained from in vivo liver tumours. Immunology, 127(1), 83-90.
12. Embar, V., Handen, A., \& Ganapathiraju, M. K. (2016). Is the average shortest path length of gene set a reflection of their biological relatedness?. Journal of bioinformatics and computational biology, $14(06), 1660002$.
13. McElroy, E., Shevlin, M., Murphy, J., \& McBride, O. (2018). Co-occurring internalizing and externalizing psychopathology in childhood and adolescence: a network approach. European child \& adolescent psychiatry, 1-9.
14. Ferreira, J. A., Gonçalves, L., Naghipoor, J., de Oliveira, P., \& Rabczuk, T. (2018). The effect of plaque eccentricity on blood hemodynamics and drug release in a stented artery. Medical engineering \& physics, 60, 47-60.
15. de Almeida Célio, F., de Lima Friche, A. A., Jennings, M. Z., de Souza Andrade, A. C., Xavier, C. C., Proietti, F., ... \& Caiaffa, W. T. (2018). Contextual characteristics associated with the perceived neighbourhood scale in a cross-sectional study in a large urban centre in Brazil. $B M J$ open, 8(8), e021445.
16. Lu, J., Chen, S. J., \& Li, B. (2017). Pathway-Based Approaches for Analysis of Genome-Wide Association Studies -A Case Report for Metastatic Small Cell Lung Cancer. International Journal of Hematology and Therapy, 3(2):1-7.

Table-1

Gene symbol	Gene name	Renal vs Non-renal		Lupus vs Control	
		Fold- Change (Log2)	q value	Fold-Change (Log2)	q value
OLFM4	olfactomedin 4	1.8	0.16	1.19	0.717
CEACAM6	carcinoembryonic antigen-related cell adhesion molecule 6	1.72	0.16	1.04	0.722
CEACAM8	carcinoembryonic antigen-related cell adhesion molecule 8	1.63	0.172	1.22	0.692
MMP8	matrix metallopeptidase 8	1.6	0.184	1.7	0.417
LTF	lactotransferrin	1.58	0.172	1.04	0.773
DEFA4	defensin, alpha 4	1.46	0.16	0.97	0.661
DEFA3/1	defensin, alpha 3/1	1.43	0.238	1.79	0.475
DAAM2	dishevelled associated activator of morphogenesis 2	1.43	0.16	0.04	0.997
CNTNAP3	contactin associated protein-like 3	1.32	0.155	-1.18	0.188
MS4A3	membrane-spanning 4-domains, subfamily A, member 3	1.27	0.165	0.96	0.657
ARG1	arginase 1	1.25	0.17	0.19	0.989
MPO	myeloperoxidase	1.23	0.16	0.57	0.826
ABCA13	ATP-binding cassette, subfamily A, member 13	1.19	0.16	0.84	0.621
CA1	carbonic anhydrase 1	1.13	0.181	0.12	0.996
IFIT1B	interferon-induced protein with tetratricopeptide repeats 1B	1.12	0.178	0.11	0.996
CRISP3	cysteine-rich secretory protein 3	1.12	0.17	0.61	0.835
LCN2	lipocalin 2	1.1	0.181	0.8	0.724
BPI	bactericidal/permeability increasing protein	1.09	0.191	0.61	0.871
XK	X-linked K gene, Kell blood group	1.08	0.167	-0.02	0.999
CNTNAP3B	contactin associated protein-like 3B	1.05	0.155	-0.92	0.229
ARHGEF12	Rho guanine nucleotide exchange factor 12	1	0.16	0.02	0.999

Table-2

source	target	Interaction
INS	INSR	+
INSR	IRS	+
IGF	INSR	+
INSR	IRS	+
IRS	PI3K	+
PIP3	PDK1	+
PDK1	AKT	+
AKT	TSC1/2	-
TSC1/2	Rheb	-
Rheb	mTORC1	+
mTORC1	HIF1-alpha	+
HIF1-alpha	VEGF	+
mTORC1	S6K1/2	+
S6K1/2	elF4B	+
S6K1/2	S6	+
mTORC1	4E-BP1	-
4E-BP1	elF4E1	-
mTORC1	ATG1	-
Rapamycin	mTORC1	-
mTORC1	PKC	+
BRAF	mTORC1	-
Stress	LKB1/STRAND/MO25	+
LKB1/STRAND/MO25	AMPK	+
AMPK	TSC1/2	+
TNF-alpha	IKK	+
IKK	TSC1/2	-
AMP	AMPK	+
Metformin	AMPK	+
AICAR	AMPK	+
Hypoxia	REDD1	+
REDD1	TSC1/2	+
INS	INSR	+
INSR	Ras	+
IGF	INSR	+
INSR	Ras	+

Table-3

source	target	Interaction
IL6	gp130	+
gp130	JAK	+
JAK	STAT3	+
STAT3	ISRE/GAS	+
STAT6	ISRE/GAS	+
ISRE/GAS	Inflammation	+
SHP1	JAK	-
JAK	gp130	+
PIAS	STAT3	-
SUMO	STAT3	-
PTP	STAT3	-
ISRE/GAS	SOCS3	+
SOCS3	JAK	-
INF	JAK	+
JAK	STAT1	+
STAT1	ISRE/GAS	+
STAT3	STAT1	+
STAT6	STAT1	+
TNF	TNFR	+
TNFR	TRADD/TRAF2/5	+
TRADD/TRAF2/5	RIP	+
A20	TRAF6	-
A20	RIP	-
CYLD	RAF2/5	-
CYLD	IKK	-
IL1	IL1R	+
IL1R	IRAK1/4/TRAF2/6	+
IRAK1/4/TRAF2/6	Pellino	+
Pellino	TRAF6	+
TRAF6	TAB2/TAB1/TAK1	+
TAB2/TAB1/TAK1	IKK	+
IKK	NF-KB	+
NF-KB	Inflammation	+
Hypoxia	HIF1-alpha	+
HIF1-alpha	NF-KB	-
HIF1-alpha	Inflammation	+

Table-4

Source	targeting	interaction
M1	T_cell	+
T_cell	T_TfH	+
T_TfH	BCL6_IL21	+
T_cell	IL12_IFN_gamma	+
IL12_IFN_gamma	Th1	+
Th1	IL2_IFN_gamma_TNF_alpha	+
AL2_IFN_gamma_TNF_alpha	Autoimmunity	+
IL2_IFN_gamma_TNF_alpha	Cellular_immunity	+
T_cell	IL6_TGF_beta	+
IL6_TGF_beta	Th17	+
Th17	IL17	+
IL17	Autoimmune_process	+
Th17	Yang	+
GM_CSF	M2	+
M2	T_cell	+
T_cell	IL12_TGF_beta	+
nTreg	IL10_IL35_TGF_beta	+
T_cell	IL2_IL4	+
IL2_IL4	Th2	+
Th2	IL4_IL5_IL13	+
IL4_IL5_IL13	Immuno_complex	+
IL10_IL35_TGF_beta	iTreg	+
iTreg	M1	+
iTreg	IL10_TGF_beta	+
IL10_TGF_beta	immune_regulation	+
IL10_TGF_beta	Yin	+

so	＋9	$0 \varepsilon 1^{\text {d }}$	0	asTV	†LSLLL＇0	I	0	ε	ς	gSTV	21	ε	0	EE0SI60で0	E909tz000	¢zı8L＇t	$0 \varepsilon^{\text {d }}$ ¢	$0 \sum_{\text {Id }}{ }^{\text {¢ }}$
$\begin{gathered} \varepsilon \\ \varepsilon \varepsilon \varepsilon \varepsilon \tau 0 \end{gathered}$	2S6	YY\％	0	ASTVA	${ }^{\text {I }}$ E $608 L^{\circ} 0$	I	0	L	ε	ASTVA	2I	L	$\begin{aligned} & \hline \angle 999 \\ & 9900 \\ & \hline \end{aligned}$	でIzではで0	6L6scoso ${ }^{\circ}$	SLEtEL＇t	YY\％	YVI
$\begin{gathered} 8 \\ \text { LLLLZ } \end{gathered}$	$\dagger 08$	ELVLS	0	ISTVA	IS96SL＇0	0	0	9	ε	ESTVA	ZI	9	$\begin{aligned} & \hline \text { £ॄEEE } \\ & \varepsilon \varepsilon \varepsilon 1^{\circ} 0 \\ & \hline \end{aligned}$	8S0z99610	898199t000	¢LE6580＇s	ELVLS	ELVLS
$87^{\circ} 0$	82 tl	SVD／GySI	0	ISTVA	$6 \mathrm{LLZ6L}{ }^{\circ} 0$	0	0	\bigcirc	$9{ }^{\text {9＊}}$	ESTVA	II	\bigcirc	で0	180L0Izで0	¢ $\angle 8900^{\circ}$	SLEtEzS＇t	SVD／GySI	SVD／gysi
¢ $L^{\circ} 0$	0	9LVLS	0	ESTVA	£ız9EL＇0	0	0	z	S＇t	ESTVA	21	z	I	8198．z8100	0	SLEt8t＇S	9LVLS	9LVLS
0	0	IdHS	0	ESTVA	L96IZL＇0	0	0	I	9	ESTVA	$\varepsilon{ }^{\text {¢ }}$	I	0	\＆8tて9tLI0	0	Sz9S92L＇s	IdHS	IdHS
0	0	SVId	0	asTVA	L8210 ${ }^{\circ} 0$	0	0	I	9	ESTVA	$\varepsilon{ }^{\text {I }}$	I	0	でたてくt910	0	SZI8L0＇9	SVId	SVId
0	0	OWnS	0	ESTVA	L8210 ${ }^{\circ} 0$	0	0	I	9	ESTVA	$\varepsilon{ }^{\text {I }}$	I	0	でててSt91．0	0	SZI8L0＇9	OWnS	OWnS
0	0	dLd	0	aSTVA	L82I0 ${ }^{\circ} 0$	0	0	I	9	ASTVA	$\varepsilon 1$	I	0	てもてくら910	0	S218L0，	dLd	dLd
$\begin{gathered} L \\ s 82 t 90 \end{gathered}$	9	ESJOS	0	aSTVA	＋Et9SL．0	0	0	τ	¢ ¢	ESTVA	乙I	τ	0	8887St610		sz90tris	ESJOS	ESJOS
$\begin{gathered} \varepsilon \\ \varepsilon 856 \varepsilon^{\circ} \end{gathered}$	t01	ILVLS	0	ASTVA	てEL8SL＇0	0	0	t	SL＇t	ESTVA	ZI	†	S＂	$88810961^{\circ} 0$	IE86LI0000	sz9stor＇s	ILVLS	ILVLS
50	999	YHNL	0	GSTVA	8ISZLL＇0	0	0	τ	s＇z	ESTVA	21	τ	0	9tLStS0で0	¢¢z8EEE000	¢ 281 L98＇t	YHNL	UHNL
So	80t	$\begin{gathered} \mathrm{s} \\ \text { IZ.AVYL/GavyL } \end{gathered}$	0	aSTVA	IZ6IL＇0	0	0	r	ح	astid	$\varepsilon 1$	τ	0	toLozelio	696Lzozo＇0	SLEtELL＇S	$\begin{gathered} \mathrm{s} \\ \text { R.JVY//adva } \end{gathered}$	s／z．AVYL／GAVYL
$\stackrel{5}{0}$	9 ¢z	did	0	ESTVA	20zs890	0	0	τ	¢	ESTVA	2 I	τ	0	LSIttLSİ0	9S9000100	sz9SISE＊9	dit	dIप
¢0	2 II	0zV	0	asTVA	9880990	0	0	z	$\stackrel{\text { s }}{ }$	ESTVA	II	乙	0	2sseghtio	$6 \downarrow \angle t S 00^{\circ} 0$	¢LEtELL＇9	0zV	02 V
$\begin{gathered} \mathcal{E} \\ \mathcal{\varepsilon \varepsilon \varepsilon \varepsilon} 0 \end{gathered}$	tet	9JVYL	0	ESTVA	て£Z9690	0	0	ε	ح	gSTVA	01	ε	0	L90Ezz910	868Et61000	sz90t91．9	9JVYL	9JVYL
S0	tてs	व7xD	0	ISTVA	9でてZぐ0	0	0	τ	ε	ESTVA	01	乙	0	6E£98tLİ0	S29S 100	SL8IL＇S	वTXD	वTXD
0	0	¢／Z．tvy	0	ESTVA	E90t9900	0	0	I	τ	ESTVA	II	I	0	8t0106tI．0	0	SLE601L＇9	s／z．tve	s／z．tvy
So	z\＆s	yITI	0	ISTVA	SELSLL＇0	0	0	τ	ε	ESTVA	zI	τ	0	IZZ6LLOZ＇0	6t0tz6zoo	sz18＇t	yITI	yITI
¢0	02ε	$\begin{gathered} 9 \\ \text { 几ZUVU/t/IYVyI } \end{gathered}$	0	asTVA	8191EL．0	0	0	τ	τ	astid	乙I	τ	0	82SLL6LI＇0	6tzSSLIO＂0	¢z9s＇s	$\begin{gathered} 9 / \\ \text { द्AVYL/t/IYVYI } \\ \hline \end{gathered}$	9／Z．EVUL／t／IYYYII
so	091	ou！t｜${ }_{\text {d }}$	0	GSTVA	686869°	0	0	2	s\％	gSTVA	II	τ	0	28EL＋E910	$6+61$ L6000 0	¢L8ILII＇9	${ }_{\text {ou！l｜}{ }^{\text {d }} \text { d }}$	оu！！｜${ }_{\text {d }}$
So	995	$\begin{gathered} \text { IY } \\ \text { VL/I } \mathrm{GV} \mathrm{~L} / 2 \mathrm{gVL} \\ \hline \end{gathered}$	0	ESTVA	Z8tLZL＇0	0	0	τ	†	gSTVA	01	τ	0	IZIESLLİ0	ILSOZ92000	¢zI8zE9＇s	$\begin{gathered} \text { IV } \\ \hline V \mathrm{~L} / \mathrm{I} \mathrm{~g} \mathrm{~L} / / \mathrm{gVL} \\ \hline \end{gathered}$	IYVL／IGVL／zqVL
SLE＊ 0	2＋26	g ${ }^{\text {－an }}$	0	astVa	6L8E180	0	0	ε	$\begin{gathered} \varepsilon \\ \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \cdot 9 \end{gathered}$	ESTVA	6	ε	$\overline{\mathcal{E E E E E}}$ $\varepsilon \varepsilon \varepsilon^{\circ} 0$	600SI0ヶで0	9596t8Ez＇0	sz90t91＇t	g ${ }^{\text {－an }}$	
0	0	MSI	0	GSTVA	86ZLZ90	0	0	1	8	ESTVA	91	I	0	EZSIE9EI0	0	SLE6SEELL	MST	MSS
0	0	ZXZM	0	ASTVA	86ZLZ90	0	0	I	8	ESTVA	91	I	0	EZSIE9EI 0	0	SLE6SEELL	ZXZM	ZXZM
0	0	HaZ：	0	ESTVA	¢858LS 0	0	0	I	8	ESTVA	LI	I	0	＋088ャでで0	0	¢290t91．8	HGZD	HaZ：
0	0	Hair	0	asTVA	S858Ls＇0	0	0	I	8	ESTVA	LI	I	0	ち088ってて「0	0	sz90t918	Hair	Hair
L＇0	t6	Hars	0	ESTV	IISE9．0	0	0	τ	8	ESTVA	91	z	0	£98888E100	S9SII 000	SZIE0でL	Hars	Hars
L＇0	t6	Mqa	0	ESTVA	IISE900	0	0	z	8	ESTVA	91	τ	0	£98888\＆100	S9SII $00^{\circ} 0$	SZIE0でL	Mga	M9］
L＇0	t6	人HO	0	ESTVA	IISE9 ${ }^{\circ}$	0	0	τ	8	ESTVA	91	τ	0	E98888¢100	S9SII $00^{\circ} 0$	szieoz＇L	人HO	XHO
$\stackrel{1}{ }$	${ }^{1} 6$	HaHDIS	0	ISTVA	IISE9\％	0	0	τ	8	ESTVA	91	τ	0	£98888E100	S9SII $00^{\circ} 0$	SZIE0でL	HaHDrs	HaHDrs
L＇0	t6	L¢MP	0	ESTVA	IISE900	0	0	z	8	ESTVA	91	2	0	£98888¢1．0	S9SIL $00^{\circ} 0$	SZIE0でL	LgMr	LgMr
0	0	dDT	0	asTV	E876scº	0	0	I	乙	ESTVA	LI		0	6zSsLLII 0	0	SL8126t＇8	dDT	dפT
So	069t	IW	0	ESTVA	8EtELL＇0	0	0	z	¢8	ESTVA	$\varepsilon 1$	z	0	9161 19020	S90tLOT 0	sz9SIS8＇t	IW	IW
S0	229	$\mathrm{HLL}^{-} \mathrm{L}$	0	ESTVA	90＜t9 ${ }^{\circ} \mathrm{O}$	0	0	2	S＇L	ESTVA	$\varepsilon{ }^{1}$	τ	0	で0	S29S $10^{\circ} 0$	\checkmark	HıL ${ }^{-}$	H ${ }^{-}{ }^{-}$L
0	0	Iz71－9709	0	ISTVA	で¢90 ${ }^{\circ} 0$	0	0	I	τ	ESTVA	$\dagger 1$	I	0	968889910	0	SL8IZ66＇S	IZ7I－9708	IZ7I－9708
So	†9ヶて	$\begin{gathered} \mathrm{b} \\ \text { üurs }^{-} \mathrm{NHI}^{-} \text {乙ITI } \\ \hline \end{gathered}$	0	ESTVA	£9t $\angle 9 L^{\circ} 0$	0	0	τ	8	gSTVA	$\varepsilon 1$	τ	0	＋Lて681020	Z9Ez01900	szIES6＇t		
¢0	tS8I	ILL	0	ESTVA	LS8IIL＇0	0	0	τ	$\stackrel{\text { s＇z }}{ }$	ESTVA	$\dagger 1$	乙	0	てt9856910	189819t00	SLEt868＇S	ILL	I 4 L
$\begin{gathered} \varepsilon \\ \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon 0 \end{gathered}$	でてI		0	ISTVA	IEESc90	0	0	ε	$\begin{gathered} \varepsilon \\ \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \in \mathrm{I} \end{gathered}$	ESTVA	¢1	ε	0	8858LStİ0	L69ZIIE000	¢LE6589		$\begin{gathered} \text { uydie- } \\ \mathrm{NL}^{- \text {beuures }} \mathrm{NHI}^{-} \text {TII } \end{gathered}$
0	0	Kı！पunumutomv	0	GSTVA	L969650	0	0	I	\＆	ESTVA	91	1	0	8 IE9\＆Lzİ0	0	S29SIS8 ${ }^{\text {L }}$	Kılunumutomb	Kı！unumutinn
0	0	$\frac{\kappa}{\text { ทִunumu! }}$	0	asTVA	L96965 0	0	0	I	ε	gSTVA	91	I	0	81£9¢Lzİ0	0	sz9SIS8 ${ }^{\circ}$		
$\mathrm{S}^{\circ} \mathrm{O}$	zz0L	عı9－4DL－97I	0	ISTVA	S619LL＇0	0	0	τ	¢8	ESTVA	$\varepsilon 1$	τ	0	800\＆180で0	t001E091．0	¢ $289+08^{\prime \prime} \dagger$		rea $^{-4 D L}{ }^{\text {－}}$－97I
$\begin{gathered} \mathcal{\varepsilon} \\ \varepsilon \in \varepsilon \varepsilon \varepsilon^{\circ} \end{gathered}$	2899	LIY．L	0	ISTVA	${ }^{8191 E L}{ }^{\circ} 0$	0	0	ε	\dagger	ASTVA	\dagger	ε	0	8zSLL6LI 0	IZtLIEstio	¢z9s＇s	LILIL	LILI
S0	0 ¢¢1	LITI	0	ISTVA	Z60SL90	0	0	τ	s＇z	ESTVA	SI	τ	0	It\＆6zesio	t6E00IE000	SLEtEZS＇9	LITI	LITI
So	299	$\begin{gathered} \text { Ssso } \\ \text { o.ddeunuuulonv } \end{gathered}$	0	aSTVA	Lt9LI9 0	0	0	r	$\stackrel{\text { s }}{ }$	ESTVA	91	τ	0	£ย£ยยย์ ${ }^{\circ} 0$	sz9s 100	S＇L		ssəoo．d｀əunumuounv
$\begin{gathered} \hline \\ \hline 9 \mathrm{~L}^{\circ} \mathrm{O} \\ \hline \end{gathered}$	08St	${ }^{\text {Sue }}$ ，	0	\＃STVA	299589 0	0	0	8	S 28.1	astur	¢I	8	0	Ltseghsio	$6769+$ E0 ${ }^{\circ} 0$	¢LEtE＊9	${ }^{\text {sux }} \mathrm{X}$	${ }^{\text {sux }} \mathrm{X}$
0	0	HSO－ N	0	ESTVA	てt£90 ${ }^{\circ} 0$	0	0	，	τ	ESTVA	$\dagger 1$	I	0	96¢889910	0	SL8IZ66＇S	HSO－ N －	HSOTD
¢0	229	zW	0	GSTVA	90＜t9 ${ }^{\circ} \mathrm{O}$	0	0	τ	S＇L	ESTVA	$\varepsilon{ }^{1}$	z	0	で0	S29S $10^{\circ} 0$	¢	2W	2W

	－	OdW	NINOLVTEN
	－	IVP	GaIZvIHLAWก7HOY（X）
	－	IVD	ヨGIZVIHLOษOTHつOษオXH
	－	IVP	GLVWVNIHLA
	－	IVP	GaIXOZVIG
	－	IVP	gளIZVIHLOTDス
	－	OdW	पINIGHヨ
	－	IVD	GGIZVIHLZNGG
	－	IVD	GaIZVIHLAWOTHOYGNEG
	－	8dWW	WกIDTVD｀gniloxpxxod
	＋	Sey	USNI
	＋	USNI	HDI
	＋	Sey	YSNI
	＋	とSNI	SNI
	＋	Z／IDSL	IGGヨy
	＋	IGGヨy	e！xod／${ }^{\text {¢ }}$
	＋	YdWV	UVOIV
	＋	YdWV	แ！บ．оџ2人
	＋	YdWV	dWV
	－	て／IDSL	HYI
	＋	YYI	rydip－gNL
	＋	て／IDSL	YdWV
	＋	YdWV	¢ZOW／GNVYLS／L gYT $^{\text {a }}$
	＋	¢ZOW／GNVYLS／L QYT	ssaluS
	－	IDYOL ${ }^{\text {u }}$	JVYG
	＋	गYd	IDYOL ${ }^{\text {u }}$
	－	IDYOL ${ }^{\text {u }}$	u！¢Kurdey
	－	IDLV	IDYOL ${ }^{\text {u }}$
	－	Lヨtコ1	Idq－${ }^{\text {¢ }}$
	－	Idq－${ }^{\text {¢ }}$	IDYOL ${ }^{\text {u }}$
	＋	9S	て／IX9S
	＋	Gt，${ }^{\text {a }}$	Z／IX9S
	＋	て／IM9S	IDษOL ${ }^{\text {u }}$
	＋	¢Dヨム	eчd［p－İIIH
	＋	عчd［8－IHIH	IDYOL ${ }^{\text {w }}$
	＋	ID\＆OL ${ }^{\text {u }}$	qәч४
	－	qәЧУ	乙／IDSL
	－	て／IDSL	LYV
	＋	LHV	IYOd
	＋	IYGd	ε Eld
	＋	عdId	YeId
	＋	YeId	SyI
	＋	StI	USNI
	＋	YSNI	HDI
	＋	S¢I	YSNI
	＋	YSNI	SNI
		${ }^{\text {²¢．x．}}$ L	20．nos
9－əIqe			

[^0]

[^1]

[^0]:

[^1]:

