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Abstract: We propose a non-monotone wedge trust region method for derivative-free 

optimization. Wedge trust region method based on traditional trust region is designed for 

derivative-free problems, and the non-monotone strategy is efficient to solve the trust 

region method. This paper combined the non-monotone strategy into wedge trust region 

methods, and the computational results proved the efficiency of the new composite 

strategy. 
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INTRODUCTION 

In this paper, we consider the unconstrained optimization problem: 

 

min ( ), ,nf x x RÎ  (1) 

 

Where, the objective function ( )f x  is continuous and its derivatives can not 

be explicitly computed [1, 2]. 

 

Considering the class of derivative-free trust-region methods, many algorithms 

can be found in the literature.  

 

One know that the trust region methods which are famous for having global convergence quality [3, 4], and the 

traditional trust-region methods obtain a trial step by solving the quadric model km , 

   
1

2

T T

k k k k km x s f x g s s G s    , (2) 

 

Where, the 
n

kg R and the n n  symmetric matrix kG  are unknown variables and determined by the model 

interpolates f  at a set of sample points, as the following 

 

    , ( ) (y ), 1,2, ,l l

k k km x f x m y f l m   , (3) 

 

Where,    1 2, , , m

k kY y y y x  is the interpolation point set. 

 

The parameter m  should be chosen as (n 1)(n 2) / 2 1m      and the interpolation points set must be 

poised with the purpose of ensuring the uniqueness and existence of the quadratic model [5-8]. When the model km  is 

determined by the above conditions, the interpolation set kY  is nonsingular. 

 

We can set out the current iteration with a nonsingular set of sample points kY  firstly. Before computing a new 

trial point using the model km , let us figure out outl
y  which is the farthest satellite from current iterate kx , and it can 
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ensure the virtue of the models. Actually, the wedge trust region method is to compute a trial step ks  by approximately 

solving 

 

min ( s)k k
s

m x                                 (4) 

 

. . ks t s                                    (5) 

 

ks W ,                                   (6) 

 

Where, kW  is a set which contains the “taboo region” area [9-11], and its purpose is to avoid the new point 

falling into it. The trail step ks  is calculated by the method which is introduced in [8]. This method is very ingenious and 

the computational results are promising. Unfortunately, we can not find out the optimal point rapidly. We must choose 

the relatively good point in the iteration for the next iteration point. 

 

In 1982, Chamberlain et al., in [12] came up with the watchdog technique for constrained optimization to 

conquer the Maratos effect. Motivated by this idea, Grippoet al., introduced a non-monotone line search technique for 

Newton’s method in [13]. Due to the high efficiency of the non-monotone techniques, a lot of authors are interested in 

working on the combination of non-monotone techniques and trust region methods [14]. Let 

 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =                  (7)  

 

Where, ( ) min{ , }m k M k=  and 0M ³  is an integer constant. Actually, the most common non-monotone 

ratio is defined as follows: 

 

( ) ( s )
.

(0) m (s )

l k k k
k

k k

f x f x
r

m

 



 

 

The rest of this paper is organized as follow. In section 2, the new non-monotone wedge trust region algorithm 

will be established, and the algorithm analysis is interpreted. Numerical results are proved in section 3 which is indicated 

that the new method is very efficient for unconstrained optimization problems. Some conclusions are given in section 4. 

 

A non-monotone wedge trust region algorithm  

 

Step 0Set the trial parameters, an initial trust region radius 0k  , and an initial guess 0x . The interpolation set

K kY x Y  ,  1 2, , , mY y y y , and it such that ( ) ( )kf x f y y Y   . 

 

Step 1 According to the current iteration point kx
, compute  

 

arg maxoutl

y Y ky y x  . 

 

Step 2 Construction quadratic model km  and define the wedge kW . 

 

Step 3 Solve the sub-problem (2) and compute the trial step ks , and calculate 

 

( ) ( ) ( s )

Pr ( ) (0) m (s )

k k k k
k

k k k

Ared d f x f x
r

ed d m

 
 


, 

( ) ( s )

(0) m (s )

l k k k
k

k k

f x f x
r

m

 



. 

 

Step 4 Update the trust region radius k  with the following Algorithm analysis. 
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Step 5 Update the interpolation set and the iteration point, if it is a successful iteration, that is 
1kr  , then 

1k kx x s   ,    / outl

kY x y y  . 

Else it is a unsuccessful iteration, that is 
1kr  , then 1k kx x  ,  

 

   / , ( )

,otherwise

out outl l

k k k kx s y y if y x x s x
Y

Y

      
 


 . 

 

Step 6 1k k  , go to step 1 

Algorithm analysis: In the above algorithm, the trust region radius must be reduced when the function value rises. 

However, the non-monotone method is different from the iteration point which makes the function value rise, so we can 

set some different parameters. Thenew rule for updating the trust region radius is constructed as follows, 

 

1 1

1 2 2

;

, =

,

k kk

k k k k k

k

s r

s r s

otherwise

 

 

 


   




且 . 

 

This strategy still reduces the trust region radius when the function value decreases. In the numerical 

experiment, the parameters are constructed as the follows, 1 0.25  , 2 0.75  , 1 0.5  , 2 2  . We choose  

 

( ) ( s )

(0) m (s )

l k k k
k

k k

f x f x
r

m

 



, 

 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =  

 

Where, ( ) min{ , }m k M k=  and 0M ³  is an integer constant 

 

Numerical results 

In this section, we compare the quadratic version of the new  with the lga . We set the rotating is / 600  

used in quadratic model. The initial value 0.4   is allowed to change over the iteration. The MATLAB source code 

for wedge trust region algorithm is in [15]. Specifically, we select 45 trial problems, which come from the CUTE. In the 

following table, the name of 45 test questions and results are given. We define n  is the dimension of the objective 

function, and nf  is the calculative times of an experimental function value. f is the optimal point and the  wed act  

represents the number of wedge constraints play a role. The final value of parameter   which is a parameter used to 

control the space of “taboo region” is given in the last column when the algorithms stop. 

 

 

 

 

Table-1: Comparison non-monotone wedge trust region algorithm with wedge trust region 
n  p

 nf
 

f
 

wed act final   

new   alg new           alg new  alg new        alg 

2 

2 

2 

3 

4 

5 

POWELL-E 

CLIFF 

DENSCHNA 

GROWTHLS 

WOODS 

OSBORNEA 

18     17 

55     65 

19     47 

59   1365 

44    359 

70   1357 

0.00E+00     0.00E+00 

2.90E-01     2.00E-01 

2.49E-33      2.74E-35 

2.58E+03 1.00E+00  

4.45E-30       6.87E-30 

1.74E-01       5.46E-05 

12    12 

4     16 

9     16 

4     29 

13    25 

11    30 

1.83E-13   7.82E-12 

2.75E-05   1.57E-11 

1.30E-11   3.85E-14 

8.94E-04   4.51E-16 

3.24E-14   8.95E-17 

3.45E-06   2.57E-15 
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6 

6 

10 

2 

2 

2 

4 

10 

2 

3 

2 

4 

10 

10 

2 

3 

2 

2 

2 

3 

3 

3 

4 

2 

2 

2 

15 

2 

8 

10 

3 

2 

2 

4 

2 

10 

2 

10 

2 

EDENSCH 

HEART6LS 

BRYBND 

BROWNBS 

HIMMELBB 

HIMMELBH 

ALLINITU 

BDQRTIC 

BEALE 

BOX3 

BRKMCC 

BROWNDEN 

BROWNAL 

CRAGGLVY 

CUBE 

DENCHNE 

DENSCHNF 

ENGVAL1 

EXPFIT 

GULF 

HATFIDD 

HATFLDE 

HIMMELBF 

HIMMELBG 

JENSMP 

SINEVAL 

BOX2 

HAIRY 

PALMER8C 

DQDRTIC 

ENGVAL2 

SISSER 

ROSENBR 

KOWOSB 

MEXHAT 

MOREBV 

NASTY 

POWER 

ZANGWIL2 

77    120 

77   8000 

115   322 

55   8000 

53     51 

55     45 

64     73 

343   113 

23     39 

33     34 

46     51 

63    116 

115   267 

115   858 

26     27 

31    121 

18     18 

21     36 

40     68 

41    393 

51    140 

55    152 

65    400 

22     59 

40     40 

21    318 

21     21 

18     20 

94   1150 

67    144 

35     84 

54    218 

22    118 

63    140 

43     77 

115   207 

7       7 

71     77 

20     51 

1.08E+02      1.03E+02 

2.21E+01      4.21E-01              

 1.58E-29       1.58E-29 

1.00E+12      6.77E+11 

0.00E+00      0.00E+00 

-1.00E+00    -1.00E+00 

5.82E+00      5.74E+00 

1.83E+01      1.83E+01 

3.94E-31      3.94E-31 

3.03E-33      3.03E-33 

1.69E-01      1.69E-01 

8.58E+04      8.58E+04 

1.14E-28      1.14E-28 

2.52E+00      1.89E+00 

0.00E+00      0.00E+00 

2.44E-34      2.44E-34 

0.00E+00      0.00E+00 

0.00E+00      0.00E+00 

2.41E-01      2.41E-01 

6.37E-31      7.06E-31 

6.62E-08      6.62E-08 

4.43E-07      4.43E-07 

3.19E-02      3.19E-02 

2.63E-163     2.63E-163 

1.24E+02      1.24E+02 

0.00E+00      0.00E+00 

3.03E-33       3.03E-33 

2.00E+01      2.00E+01 

6.65E-01      1.60E-01 

2.23E-42      2.23E-42 

2.86E-30      2.86E-30 

4.38E-58      7.38E-56 

0.00E+00     4.93E-30 

3.08E-04      3.08E-04 

-4.01E-02     -4.01E-02 

2.51E-32      2.51E-32 

5.00E-41      5.00E-41 

3.16E-30      5.21E-27 

-1.82E+01    -1.82E+01 

10    22 

11    36 

19    31 

4      6 

14    15 

1     25 

3     21 

31    19 

14    16 

13    14 

3     23 

6     23 

25    34 

3     28 

17    15 

10    16 

11    11 

11    16 

18    16 

11    28 

18    28 

18    32 

19    27 

7     37 

21    22 

12    83 

10    12 

8     12 

6     46 

0     13 

18    14 

38    30 

12    18 

22    20 

14    17 

19    41 

0      0 

3      6 

13    24 

4.66E-05   1.57E-14 

1.34E-05   4.40E-10 

2.23E-13   2.93E-14 

2.00E-08   2.73E-07 

4.89E-18   9.70E-20 

8.17E-02   2.87E-16 

2.70E-03   9.19E-15 

5.95E-14   3.68E-13 

9.01E-13   1.77E-15 

8.27E-15   1.96E-16 

3.28E-05   2.32E-15 

3.30E-03   8.77E-15 

1.61E-13   8.07E-17 

3.76E-04   6.55E-04 

2.35E-17   2.95E-17 

1.79E-12   1.91E-15 

6.84E-11   6.96E-11 

7.78E-10   2.97E-10 

1.77E-15   3.61E-15 

1.41E-16   2.17E-17 

2.87E-16   1.33E-16 

2.57E-16   6.12E-15 

9.09E-15   3.90E-16 

1.34e-11   1.42e-77 

6.37E-15   4.69E-15 

1.21E-15  6.98E-159 

1.68E-12   1.75E-15 

3.11E-11   7.04E-12 

2.59E-04   1.69E-15 

4.00E-01   1.96E-13 

1.73E-13   1.47E-15 

3.32E-15   3.95E-16 

6.83E-15   1.78E-17 

6.30E-15   4.19E-16 

1.53E-12   2.05E-14 

8.40E-15   1.55E-18 

4.00E-01   4.00E-01 

2.34E-02   8.72E-16 

9.69E-15   9.06E-15 

 

Comparing “ nf ” between the new and lga , we can see that our rule is better then former one. The numbers 

of win of two algorithms are 37 and 4, In the midst of 9 questions whose optimal solution is uniform, all of them reduced 

the time of calculations. For example, to the problem “ROSENBR”, new  is called 22 function evaluations while lga  is 

called 118 function evaluations. For example, to the text problem “BOX2”, the wedge constraint of new  is more active 

than the wedge constraint of lga , although the numbers of function evaluations are the same.  

 

 

 

CONCLUSIONS  

In this paper, we investigate a non-monotone wedge trust region method for unconstrained optimization without 

derivatives. The performance of the non-monotone wedge trust region method is improved. The results of numerical texts 

show that the number of function evaluations is reduced for a majority of text problems. Our improvement may be active 

and efficient in practice.  
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