

Available online: https://saudijournals.com/journal/sb/home 203

Scholars Bulletin (Engineering)

An Official Publication of “Scholars Middle East Publishers” ISSN 2412-9771 (Print)

Dubai, United Arab Emirates ISSN 2412-897X (Online)

Website: www.saudijournals.com

Requirement of Python Programming Language for Reinforcement Learning

(RL)
Varun Geetha Mohan

1
, Mohamed Ariff Ameedeen

1,2

1
Faculty of Computer System and Software Engineering, Universiti Malaysia Pahang, Malaysia

2
IBM Centre of Excellence, Universiti Malaysia Pahang, Malaysia

*Corresponding author

Mohamed Ariff Ameedeen

Article History

Received: 07.02.2018

Accepted: 19.02.2018

Published: 28.02.2018

DOI:
10.36348/sb.2018.v04i02.010

Abstract: In this article we discussed on why Python require in Reinforcement

Learning(RL). Python languages have a unique ecosystem, cultures and have their own

philosophies. Python codes are available as open sources and Python community

involvement with local, national and international events and it is helpful for new

developers. Python have its wide array of open source code libraries, package

management and ability to work well on platforms other than Windows OS. Finally,

Python is great for deployment automation and web development and many non-

developers are first introduced to the language and ecosystem while getting data

analysis work done.

Keywords: Machine Learning, Supervised Learning, Unsupervised Learning,

Reinforcement Learning, Python, Markov Decision Process.

INTRODUCTION

We are most probably living in the most defining period of human antiquity is

the time when computing moved from large mainframes to PC to cloud. But what

makes it defining is not what has happened, but what coming our way in years to come.

One of the most fundamental questions for scientists across the globe has been – “How

to learn a new skill?”. The desire to understand the answer is obvious – if we can

understand this, we can enable human species to do things we might not have thought

before.

Alternately, we can train machines to do more

“human” tasks and create true artificial intelligence [1].

While we don’t have a complete answer to the above

question yet, there are a few things which are clear.

Irrespective of the skill, we first learn by interacting

with the environment. Whether we are learning to drive

a car or whether it an infant learning to walk, the

learning is based on the interaction with the

environment. Learning from interaction is the

foundational underlying concept for all theories of

learning and intelligence [2].

Reinforcement Learning (RL) alludes to both a

learning issue and a subfield of machine learning. It

alludes to figuring out how to control a framework to

augment some numerical esteem which speaks to a

long-term objective. RL is an extremely natural and

complete answer for autonomous decision making. As

people utilize comparative approach for day by day life

choices demonstrate that the field has a great deal of

potential for some applications, and the best of them is

Robotics [3, 4]. A typical setting where reinforcement

learning works is shown in Figure 1: A controller gets

the controlled system's state and a reward related with

last state change. It at that point figures an activity

which is sent back to the system. Accordingly, the

framework makes a change to another state and the

cycle is rehashed. The issue is to take in a method for

controlling the framework to boost the aggregate

reward. The learning issues vary in the points of interest

of how the information is gathered and how execution

is estimated [5].

The estimations accessible on the framework's

state are nitty sufficiently gritty with the goal that the

controller can abstain from thinking about how to

gather data about the state. Issues with these attributes

are best depicted in the structure of Markovian Decision

Processes (MDPs). The standard way to deal with

'illuminate' MDPs is to utilize dynamic programming,

which changes the issue of finding a decent controller

into the issue of finding a decent esteem work. Aside

from the easiest situations when the MDP has not very

many states and activities, dynamic writing computer

programs is infeasible [6, 7]. The Python codes using in

RL can be as a way of turning the infeasible dynamic

programming methods into practical algorithms so that

they can be applied to large-scale problems. Python’s

expansive library of open source data analysis tools,

web frameworks and testing instruments make it

http://www.saudijournals.com/

Available online: https://saudijournals.com/journal/sb/home 204

ecosystem one of the largest out of any programming

community. Python is an accessible language for new

programmers because the community provides many

introductory resources [8, 9].

Fig-1: The basic reinforcement learning scenario

Various ML applications include tasks that can

be set up as strengthened or reinforced. In the present

paper, we have focused on the highlights important and

specifically, this work is concerned about grouping and

their problems and even their characteristics moreover.

We have restricted our references to recent refereed

journals, published books and conferences. In option,

we have included a few references with respect to the

original work that began the specific line of research

under exchange. The peruse ought to be advised that a

solitary can’t be an exhaustive review of all grouping

algorithms. Rather, our objective has been to give an

agent test of existing lines of research in each learning

strategy. In each of our listed regions, there are

numerous different papers that more extensively detail

important work.

The next section covers comparison of

reinforcement learning with supervised and

unsupervised learning. The features of Python are

described in section 3 and finally, last section concludes

this review paper.

Comparison of reinforcement learning with other

machine learning methodologies
Reinforcement Learning is of great interest

because of the large number of practical applications

that it can be used to address, ranging from problems in

artificial intelligence to operations research or control

engineering. Reinforcement learning methods specify

how the agent changes its policy from the result of

experience. Roughly, the agent’s goal is to get as much

reward as it can over the long run. By using this

machine learning algorithm, the machine gets trained to

make specific decisions. That means, the machine is

exposed to an environment where it trains itself

continuing trial and error. However, machine learns

from the experience and tries to capture the best

knowledge to make accurate business decisions [10].

Reinforcement Learning belongs to a bigger

class of machine learning algorithm. Let’s see a

comparison between RL and others.

Supervised vs Reinforcement Learning

The objective of supervised learning is to

create an incisive model of the distribution of class

labels in terms of forecaster features. Supervised

machine learning is the explore for algorithms that basis

from externally supplied instances to produce prevalent

hypothesis, when then construct predictions about

future illustrations. The creating classifier is then used

to allot class names to the testing occurrences where the

estimations of the forecaster highlights are known,

however the estimation of the class mark is obscure.

This machine learning algorithm consists of a target or

dependent variable which is to be predicted from a

given set of predictors or independent variables. Using

these set of variables, we originate a function that map

inputs to desired outputs. The instruction process

continues until the model achieves a desired level of

accuracy on the instruction data.

In supervised learning, there’s an external

“supervisor”, which has knowledge of the environment

and who shares it with the agent to complete the task.

But there are some problems in which there are so many

combinations of subtasks that the agent can perform to

achieve the objective. So that creating a “supervisor” is

almost impractical. For example, in a chess game, there

are tens of thousands of moves that can be played and

creating a knowledge base that can be played is a

tedious task. In these problems, it is more feasible to

learn from one’s own experiences and gain knowledge

from them. This is the main difference that can be said

of reinforcement learning and supervised learning. In

both supervised and reinforcement learning, there is a

mapping between input and output. But in

reinforcement learning, there is a reward function which

act as a feedback to the agent as opposed to supervised

learning [11, 12].

Available online: https://saudijournals.com/journal/sb/home 205

Unsupervised vs Reinforcement Learning

Unsupervised Learning considers the problem

of discovering regularities, features or structure in

unlabelled data. The unlabelled data distinguishes

unsupervised learning from supervised learning and

reinforcement learning. It is often easier to obtain large

quantities of unlabelled data from databases and sources

on the web, for example images of unlabelled objects.

For this reason, the idea of using unsupervised learning

in combination with supervised learning has attracted

interest for sometimes. This machine learning algorithm

do not have any target or outcome variable to predict or

estimate. It is used for clustering population in different

groups, which is widely used for segmenting customers

in different groups for specific intervention.

In reinforcement learning, there’s a mapping

from input to output which is not present in

unsupervised learning. In unsupervised learning, the

main task is to find the underlying patterns rather than

the mapping. For example, if the task is to suggest a

news article to a user, an unsupervised learning

algorithm will look at similar articles which the person

has previously read and suggest anyone from them.

Whereas a reinforcement learning algorithm will get

constant feedback from the user by suggesting few new

articles and then build a “knowledge graph” of which

articles will the person like [12, 13].

There is also a fourth type of machine learning

methodology called semi-supervised learning, which is

essentially a combination of supervised and

unsupervised learning. It differs from reinforcement

learning as same to supervised and semi-supervised

learning has direct mapping whereas reinforcement

does not [14].

Python is now appropriate for building enterprise

software

From the early 2000s through the today the

languages and ecosystems for many dramatically typed

languages have greatly improved and often surpassed

some aspects of other ecosystems. Python, Ruby and

other previously derided languages now have vast, well-

maintained open source ecosystems backed by both

independent developers and large companies including

Microsoft, IBM, Google, Facebook, Dropbox, Twilio

and many others. Python’s open source libraries,

especially for web development and data analysis, are

some of the best maintained and fully featured pieces of

code for any language.

Meanwhile, some of the traditional enterprise

software development languages such as Java have

languished due to underinvestment by their major

corporate backers [15]. When Oracle purchased Sun

Microsystems in 2009 there was a long lag time before

Java was enhanced with new language features in Java

7. Oracle also bundles unwanted adware with the Java

installation, whereas the Python community would

never put up with such a situation because the language

is open source and does not have a single corporate

controller [16].

Other ecosystems, such as the .NET platform

by Microsoft have fared much better. Microsoft

continued to invest in moving the .NET platform along

throughout the early party of the new millennium[17].

However, Microsoft’s enterprise products often have

expensive licensing fees for their application servers

and associated software. In addition, Microsoft is also a

major backer of open source, especially Python, and

their Python tools for Visual Studio provide a top-notch

development environment [8, 18].

The end of the result is that enterprise software

development has changed dramatically over the past

couple of decades. CIOs and technical executives can

no longer ignore the progress of Python and the great

open source community in the enterprise software

development landscape if they want to continue

delivering business value to their business side

customers [19].

Enterprise Python

Enterprise software is built for the

requirements of an organization rather than the needs of

an individual. Software written for enterprises often

needs to integrate with legacy systems, such as existing

databases and non-web applications. There are often

requirements to integrate with authentication systems

such as the Lightweight Directory Access Protocol

(LDAP) and Active Directory (AD) [20].

Organizations develop enterprise software with

numerous custom requirements to fit the specific needs

of their operating model. Therefore, the software

development process often becomes far more

complicated due to disparate factions within an

organization vying for the software to handle their

needs at the expense of their factions.

The complexity due to the many stakeholders

involved in the building of enterprise software leads to

large budgets and extreme scrutiny by non-technical

members of an organization. Typically, those non-

technical people place irrational emphasis on the choice

of programming language and frameworks when

otherwise they should not make technical design

decisions [21, 22].

Misconceptions about Python in enterprise

environments

One of the misconceptions around Python and

other dynamically-typed languages is that they cannot

be reliably used to build enterprise-grade software.

However, almost all commercial and government

enterprises already use Python in some capacity, either

as glue code between disparate applications or to build

the application themselves.

Available online: https://saudijournals.com/journal/sb/home 206

Traditionally large organizations building

enterprise software have used statically typed languages

such as C++, .NET and Java. Throughout the 1980s and

1990s large companies such as Microsoft, Sun

Microsystems and Oracle marketed these languages as

“enterprise grade”. The inherent snub to other

languages was that they were not appropriate for CIOs’

difficult technical environments. Languages other than

Java, C++ and .NET seen as risky and therefore not

worthy of investment [23].

In addition, “scripting languages” such as

Python, Perl and Ruby were not yet robust enough in

the 1990s because their core standard libraries were still

being developed[24]. Frameworks such as Django,

Flask and Rails (for Ruby) did not yet exist. The web

was just a beginning and most enterprise applications

were desktop apps built for Windows. Python simply

wasn’t made for such environments [25, 26].

CONCLUSION

There are two cue suggestions that allow RL

algorithms to achieve the goal. The first suggestion is to

use samples to compactly represent the dynamics of the

control problem and this is important for two reasons.

First reason is that it allows one to deal with learning

scenarios when the dynamics is unknown and second,

even if the dynamics is available, exact reasoning that

uses it might be intractable on its own. The second cue

suggestion behind RL algorithms is to use powerful

function approximation methods to compactly represent

value functions. The significance of this is that it allows

dealing with large, high-dimensional state and action-

spaces. These two proposals become fit concurrently

and tests might be focused around a little subset of the

spaces they have a place with, which sharp capacity

estimate strategies may misuse. It is the understanding

of the interplay between dynamic programming,

samples and function approximation that is at the centre

of designing, analysing and applying RL algorithms.

Now we can say that Python is the excellent

option for the application of RL algorithms as dynamic

programming. This programming language have unique

ecosystem, cultures and philosophies built around them.

Python’s culture values open source software,

community involvement with local, national and

international events and teaching to new programmers.

Developers found that Microsoft’s .NET ecosystem

lacking when it came to satisfy their needs and Python

filled the gap with its wide array of open source code

libraries, package management and ability to work well

on platforms other than Windows. Python, Machine

Learning and Language Wars compares Python with R,

MATLAB and Julia for data science work. While

Python is great for deployment automation and web

development, many non-developers are first introduced

to the language and ecosystem while getting data

analysis work done.

REFERENCE

1. Melnikov, A. A., Nautrup, H. P., Krenn, M.,

Dunjko, V., Tiersch, M., Zeilinger, A., &

Briegel, H. J. (2018). Active learning machine

learns to create new quantum experiments.

Proceedings of the National Academy of

Sciences, 201714936.

2. Lake, B. M., Ullman, T. D., Tenenbaum, J. B.,

& Gershman, S. J. (2017). Building machines

that learn and think like people. Behavioral

and Brain Sciences, 40.

3. Yang, G. H., Sloan, M., & Wang, J. (2016).

Dynamic information retrieval modeling.

Synthesis Lectures on Information Concepts,

Retrieval, and Services, 8(3), 1-144.

4. Aly, A., Griffiths, S., & Stramandinoli, F.

(2017). Metrics and benchmarks in human-

robot interaction: Recent advances in cognitive

robotics. Cognitive Systems Research, 43, 313-

323.

5. Portugal, I., Alencar, P., & Cowan, D. (2017).

The use of machine learning algorithms in

recommender systems: a systematic review.

Expert Systems with Applications.

6. Xu, X., Zuo, L., & Huang, Z. (2014).

Reinforcement learning algorithms with

function approximation: Recent advances and

applications. Information Sciences, 261, 1-31.

7. Gudivada, V. N., Irfan, M. T., Fathi, E., &

Rao, D. L. (2016). Cognitive Analytics: Going

Beyond Big Data Analytics and Machine

Learning. In Handbook of Statistics (Vol. 35,

pp. 169-205). Elsevier.

8. Andress, J., & Linn, R. (2016). Coding for

penetration testers: building better tools.

Syngress.

9. Ong, S. P., Richards, W. D., Jain, A., Hautier,

G., Kocher, M., Cholia, S., ... & Ceder, G.

(2013). Python Materials Genomics

(pymatgen): A robust, open-source python

library for materials analysis. Computational

Materials Science, 68, 314-319.

10. Barto, A. G., & Sutton, R. S. (1997).

Reinforcement learning in artificial

intelligence. In Advances in Psychology (Vol.

121, pp. 358-386). North-Holland.

11. Castelli, M., Vanneschi, L., & Largo, Á. R.

(2016). Supervised Learning: Classification.

12. Mendonça, M. R., Bernardino, H. S., & Neto,

R. F. (2018). Reinforcement learning with

optimized reward function for stealth

applications. Entertainment Computing, 25,

37-47.

13. Guyon, I., Dror, G., Lemaire, V., Taylor, G., &

Aha, D. W. (2011, July). Unsupervised and

transfer learning challenge. In Neural

Networks (IJCNN), The 2011 International

Joint Conference on (pp. 793-800). IEEE.

14. Rhee, P. K., Erdenee, E., Kyun, S. D., Ahmed,

M. U., & Jin, S. (2017). Active and semi-

Available online: https://saudijournals.com/journal/sb/home 207

supervised learning for object detection with

imperfect data. Cognitive Systems Research,

45, 109-123.

15. Bettini, L., & Damiani, F. (2017). Xtraitj:

Traits for the Java platform. Journal of

Systems and Software, 131, 419-441.

16. Zhou, Z., Towey, D., Poon, P. L., & Tse, T. H.

(2017). Introduction to the Special Issue on

Test Oracles.

17. Hardy, C., & Stobart, S. (2003). Introduction

to Web Matrix: ASP. NET Development for

Beginners. Butterworth-Heinemann.

18. Anderson, R. (2002). Professional ASP. Net

1.0. Wrox.

19. Nieuwenhuis, L. J., Ehrenhard, M. L., &

Prause, L. (2017). The shift to Cloud

Computing: The impact of disruptive

technology on the enterprise software business

ecosystem. Technological forecasting and

social change.

20. Yeh, Y. S., Lai, W. S., & Cheng, C. J. (2002).

Applying lightweight directory access protocol

service on session certification authority.

Computer Networks, 38(5), 675-692.

21. Fowler, M. (2002). Patterns of enterprise

application architecture. Addison-Wesley

Longman Publishing Co., Inc..

22. Lawton, G. (2005). LAMP lights enterprise

development efforts. Computer, 38(9), 18-20.

23. Atkinson, C., Gerbig, R., & Fritzsche, M.

(2015). A multi-level approach to modeling

language extension in the enterprise systems

domain. Information Systems, 54, 289-307.

24. Biggar, P., de Vries, E., & Gregg, D. (2012). A

practical solution for achieving language

compatibility in scripting language compilers.

Science of Computer Programming, 77(9),

971-989.

25. Nitze, A. (2015, January). Evaluation of

JavaScript quality issues and solutions for

enterprise application development. In

International Conference on Software Quality

(pp. 108-119). Springer, Cham.

26. McMorran, A. W., Lincoln, R. W., Taylor, G.

A., & Stewart, E. M. (2011, July). Addressing

misconceptions about the common information

model (CIM). In Power and Energy Society

General Meeting, 2011 IEEE (pp. 1-4). IEEE.

