

Available online: https://saudijournals.com/journal/sb/home 936

Scholars Bulletin (Engineering)

An Official Publication of “Scholars Middle East Publishers” ISSN 2412-9771 (Print)

Dubai, United Arab Emirates ISSN 2412-897X (Online)

Website: www.saudijournals.com

Intelligent Gpu Scheduling and Fairness Mechanisms for Multi-Tenant Ai

Workloads in Kubernetes–Openstack Environments
Lova Gautham Pemmadi1*, Hema Sree Chunduri2, Praveen Veeramachaneni2
1Southern Arkansas University
2Northwestern Polytechnic University

*Corresponding author

Lova Gautham Pemmadi

Article History

Received: 14.11.2018

Accepted: 16.12.2018

Published: 30.12.2018

DOI:
10.36348/sb.2018.4.12.9

Abstract: The proliferation of artificial intelligence (AI) and deep learning workloads

has intensified demand for Graphics Processing Unit (GPU) resources in cloud

computing environments. Multi-tenant infrastructures, particularly those leveraging

Kubernetes orchestration within OpenStack platforms, face critical challenges in

efficiently sharing GPU resources while maintaining fairness across diverse tenants and

workloads. This paper investigates intelligent GPU scheduling and fairness mechanisms

tailored for multi-tenant AI workloads in Kubernetes–OpenStack environments. Building

upon recent advances in container orchestration and GPU virtualization, this study

examines the architectural integration of Kubernetes device plugins with OpenStack

Nova and Ironic GPU management components. The analysis explores fairness versus

performance trade-offs, evaluating how priority-based queuing, workload-aware

preemption, and policy-driven scheduling impact training latency, inference throughput,

and cost efficiency. Through comprehensive examination of existing GPU sharing

techniques, virtualization approaches, and scheduling algorithms, this research identifies

critical design considerations for achieving balanced resource allocation. The findings

reveal that hybrid scheduling approaches combining time-slicing with spatial

partitioning, coupled with adaptive fairness policies, offer superior performance isolation

and tenant satisfaction compared to static allocation schemes. Furthermore, the

integration of capacity-based resource models with dynamic workload profiling enables

fine-grained quality-of-service (QoS) guarantees essential for latency-sensitive inference

tasks while maximizing utilization for batch training workloads. This work contributes to

the growing body of knowledge on GPU resource management in containerized cloud

environments and provides practical insights for deploying fair and efficient multi-tenant

AI infrastructures.

Keywords: GPU scheduling, fairness mechanisms, multi-tenancy, Kubernetes,

OpenStack, container orchestration, AI workloads, resource allocation.

1. INTRODUCTION

The exponential growth of machine learning and deep neural network applications has positioned GPUs as

indispensable computational resources in modern cloud infrastructures. Unlike traditional CPU-centric workloads, AI

applications exhibit distinct characteristics including irregular memory access patterns, variable execution times, and

heterogeneous resource requirements spanning training and inference phases (Becchi et al., 2012). Multi-tenant cloud

environments, where multiple users and organizations share physical infrastructure, must address the dual challenges of

maximizing GPU utilization while ensuring equitable resource distribution. Container orchestration platforms,

particularly Kubernetes, have emerged as dominant frameworks for deploying and managing distributed applications.

When integrated with Infrastructure-as-a-Service (IaaS) platforms such as OpenStack, Kubernetes enables flexible,

scalable deployment of containerized workloads with sophisticated resource management capabilities (Patchamatla,

2018). However, GPU resources present unique scheduling complexities absent in CPU or memory management. GPUs

are discrete, non-preemptible devices with limited support for fine-grained sharing, making traditional fair-share

scheduling algorithms inadequate (Hong et al., 2017a).

The challenge intensifies in multi-tenant scenarios where diverse workloads, ranging from long-running training

jobs to latency-critical inference services, compete for limited GPU capacity. Static allocation strategies, where entire

GPUs are exclusively assigned to single containers or virtual machines, result in poor utilization as many AI workloads

exhibit bursty GPU usage patterns (Goswami et al., 2016). Conversely, naïve sharing approaches without proper isolation

mechanisms lead to performance interference, unpredictable execution times, and tenant dissatisfaction (Sengupta et al.,

https://saudijournals.com/journal/sb/home
http://www.saudijournals.com/

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 937

2013). Recent research has explored various GPU virtualization and scheduling techniques, including API remoting,

para-virtualization, and hardware-assisted virtualization (Hong et al., 2017b). Middleware solutions have demonstrated

promising results in enabling fine-grained GPU sharing through kernel-level interception and time-slicing mechanisms

(Goswami et al., 2016). However, the integration of these techniques within production-grade orchestration platforms

like Kubernetes, coupled with the specific architectural constraints of OpenStack deployments, remains an active area of

investigation. This paper addresses the critical gap in understanding how intelligent scheduling policies and fairness

mechanisms can be effectively implemented for multi-tenant AI workloads in Kubernetes–OpenStack environments. The

research extends the foundational work of Patchamatla (2018) on optimizing Kubernetes-based multi-tenant container

environments by specifically focusing on GPU-aware scheduling strategies, fairness guarantees, and performance trade-

offs. The primary objectives include: (1) analyzing architectural integration points between Kubernetes device plugins

and OpenStack GPU management, (2) evaluating fairness mechanisms and their impact on workload performance, (3)

examining trade-offs between strict fairness and overall system efficiency, and (4) identifying design principles for

policy-driven GPU schedulers in containerized AI infrastructures.

The remainder of this paper is organized as follows. Section 2 reviews related work on GPU virtualization,

scheduling algorithms, and multi-tenant resource management. Section 3 describes the architectural components of

Kubernetes–OpenStack GPU management. Section 4 analyzes fairness mechanisms and scheduling policies. Section 5

examines performance implications and trade-offs. Section 6 discusses implementation considerations and challenges.

Section 7 concludes with future research directions.

2. Related Work

2.1 GPU Virtualization Techniques

GPU virtualization forms the foundation for enabling multi-tenant GPU sharing in cloud environments. Hong et

al. (2017b) provided a comprehensive taxonomy of GPU virtualization approaches, categorizing techniques into API

remoting, para-virtualization, and hardware-assisted methods. API remoting intercepts GPU library calls and forwards

them to remote GPU servers, enabling location transparency but introducing communication overhead. Para-

virtualization modifies guest operating systems to enable direct GPU access through hypervisor mediation, balancing

performance and isolation (Gupta et al., 2011). Kato et al. (2012) introduced Gdev, an operating system-level approach

providing first-class GPU resource management through virtual memory abstraction and device memory sharing. Their

work demonstrated that OS-level virtualization enables fine-grained isolation and improved data management compared

to hypervisor-based approaches. Similarly, Becchi et al. (2012) developed a virtual memory-based runtime supporting

GPU multi-tenancy across cluster nodes, achieving significant performance improvements over serialized execution

through dynamic binding and load balancing.

2.2 GPU Scheduling Algorithms

Scheduling algorithms determine how GPU resources are allocated among competing workloads, directly

impacting both fairness and efficiency. Sengupta et al. (2013) proposed Rain, a multi-level scheduler implementing

system-level GPU "hyperthreading" with prioritization and least-attained-service fairness for server workloads. Their

approach enabled multiple applications to share GPUs without modification, demonstrating throughput improvements

while maintaining fairness guarantees. Building on this foundation, Sengupta et al. (2014) introduced the Strings

scheduler, which decomposes GPU scheduling into device-level scheduling and load-balancing components. This

decomposition enables better throughput while enforcing fairness constraints in multi-tenant accelerator clouds.

Similarly, Menychtas et al. (2014) proposed disengaged scheduling strategies using kernel-mediated timeslicing with

overuse control and fair queuing to guarantee access while limiting idleness. Hu et al. (2016) developed DASE

(Dynamical Application Slowdown Estimation), a model for accurately estimating per-application GPU slowdowns

under spatial multitasking. Their DASE-Fair SM allocation policy minimizes system unfairness by intelligently

distributing streaming multiprocessors (SMs) among concurrent applications. This work highlighted the importance of

slowdown-aware scheduling in achieving fairness objectives.

2.3 Fairness Mechanisms

Fairness in GPU resource allocation has received significant attention due to the substantial performance

variations experienced by applications under different sharing scenarios. Hong et al. (2017a) implemented FairGV, a

trap-less GPU virtualization architecture employing weighted fair queuing and work-conserving GPU-centric co-

scheduling. Their system achieved near-ideal weighted fairness with strong performance isolation for mixed workloads,

demonstrating that carefully designed fairness mechanisms need not sacrifice efficiency. Goswami et al. (2016)

developed GPUShare, middleware enabling fine-grained GPU time-slicing through kernel yielding combined with

central scheduling to smooth tenant share disparities. Experimental results showed improved fairness and aggregate

performance compared to driver-level scheduling. The middleware approach proved particularly effective for cloud

environments where application modification is impractical. Yu et al. (2018) introduced SMGuard, a flexible framework

employing a capacity-based resource model (CapSM) with quotas, reservations, and dynamic eviction mechanisms.

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 938

SMGuard provides QoS guarantees for latency-sensitive workloads co-located with batch jobs while boosting overall

utilization. This capacity-based approach represents an important advancement in balancing competing objectives of

fairness, performance, and efficiency.

2.4 Container-Based GPU Sharing

The rise of container orchestration platforms has necessitated new approaches to GPU sharing tailored for

containerized environments. Gu et al. (2018) proposed GaiaGPU, which partitions physical GPUs into virtual GPUs for

containers using elastic and dynamic allocation to share GPU memory and compute resources with low overhead. Their

work demonstrated the feasibility of container-native GPU virtualization without significant performance penalties. Oh et

al. (2018) developed an adaptive fair-share method for container-based clusters enabling GPU sharing without memory

shortage issues. Their approach showed improvements in both execution time and GPU memory utilization compared to

static allocation methods. The adaptive nature of the scheduler allowed dynamic adjustment to varying workload

characteristics, a critical capability for production environments. Hu et al. (2018) addressed GPU scheduling specifically

for deep neural network serving through Olympian, which extends TensorFlow Serving with low-overhead profiling and

interleaving to enforce fair shares across concurrent large models. Olympian achieves millisecond-scale switching with

minimal overhead, demonstrating that inference serving scenarios benefit from specialized scheduling approaches

distinct from training workloads.

2.5 Multi-Tenant Cloud Architectures

The architectural integration of GPU management within multi-tenant cloud platforms presents unique

challenges. Gupta et al. (2011) introduced Pegasus, implementing hypervisor-level scheduling methods treating

accelerators as first-class schedulable resources. Their work enabled fair and efficient GPU sharing across virtual

machines, establishing foundational principles for cloud-based GPU resource management. Margiolas and O'Boyle

(2016) developed portable software-managed scheduling on accelerators using runtime and JIT compilation to enable

transparent, portable scheduling control. Their approach improved fairness and throughput across thousands of diverse

workloads without requiring application-specific tuning. Tanasic et al. (2014) proposed hardware extensions enabling

preemptive multitasking with dynamic SM distribution, improving responsiveness and fairness for multiprogrammed

GPU workloads. Patchamatla (2018) examined the optimization of Kubernetes-based multi-tenant container

environments in OpenStack specifically for scalable AI workflows. This work identified GPU sharing and advanced

scheduling as critical but under-explored challenges, highlighting the need for dynamic resource allocation strategies and

GPU-aware scheduling within Kubernetes-OpenStack deployments. The research established the foundation upon which

this current investigation builds.

3. Architectural Components of Kubernetes–OpenStack GPU Management

3.1 Kubernetes Device Plugin Framework

Kubernetes provides a device plugin framework enabling vendor-specific resource management for specialized

hardware including GPUs. Device plugins run as daemonsets on each node, advertising available device resources to the

kubelet and facilitating device allocation during pod scheduling. The plugin interface supports device discovery, health

monitoring, and allocation, but does not inherently provide fairness guarantees or advanced scheduling policies

(Patchamatla, 2018). The standard Kubernetes scheduler treats GPUs as extended resources, allocating them based on

simple quantity matching without awareness of workload characteristics, GPU utilization patterns, or fairness objectives.

This limitation necessitates custom scheduler extensions or external scheduling components to implement intelligent

GPU allocation policies (Hong et al., 2017b). Device plugins must coordinate with these enhanced schedulers to translate

high-level scheduling decisions into concrete device assignments.

3.2 OpenStack Nova and Ironic GPU Management

OpenStack's compute service (Nova) manages GPU resources through flavor extra specifications and PCI

passthrough mechanisms. Nova scheduler filters and weighers determine placement of instances on compute nodes based

on available GPU resources. The Ironic bare-metal service extends this capability to physical servers, enabling direct

GPU access without virtualization overhead (Patchamatla, 2018). Integration between Kubernetes and OpenStack

typically occurs through the OpenStack Cloud Provider, which enables Kubernetes to consume OpenStack resources

including GPU-equipped instances. However, this integration layer does not automatically inherit GPU-aware scheduling

capabilities from either platform, requiring additional coordination mechanisms to achieve intelligent GPU allocation

(Gu et al., 2018).

3.3 Integration Architecture

The integration of Kubernetes device plugins with OpenStack GPU management creates a multi-layered

scheduling architecture. At the infrastructure layer, OpenStack Nova determines instance placement on GPU-equipped

compute nodes. At the orchestration layer, Kubernetes schedules pods onto these instances based on resource requests

and constraints. At the device layer, device plugins manage GPU allocation to individual containers within pods. This

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 939

hierarchical structure introduces coordination challenges. Scheduling decisions at one layer may conflict with constraints

or objectives at another layer. For example, OpenStack may optimize for compute node utilization while Kubernetes

optimizes for pod affinity, potentially leading to suboptimal GPU allocation (Patchamatla, 2018). Effective intelligent

scheduling requires cross-layer coordination mechanisms that propagate fairness policies and workload characteristics

throughout the stack. Table 1 summarizes the key components and their responsibilities in the Kubernetes–OpenStack

GPU management architecture.

Table 1: Architectural Components and Responsibilities

Component Layer Primary Responsibilities GPU Management Capabilities

Kubernetes Device

Plugin

Device GPU discovery, health monitoring,

allocation

Device-level resource tracking and

assignment

Kubernetes Scheduler Orchestration Pod placement, resource matching Extended resource allocation based on

requests

OpenStack Nova Infrastructure Instance placement, PCI

passthrough

GPU-equipped instance scheduling and

provisioning

OpenStack Ironic Infrastructure Bare-metal provisioning Direct GPU access without

virtualization

Cloud Provider

Integration

Cross-layer Resource synchronization GPU resource visibility across platforms

3.4 Scheduling Decision Flow

GPU scheduling in Kubernetes–OpenStack environments follows a multi-stage decision flow. First, users

specify GPU requirements in pod specifications using resource requests and limits. Second, the Kubernetes scheduler

identifies candidate nodes with sufficient available GPU resources. Third, device plugins on selected nodes allocate

specific GPU devices to containers. Fourth, OpenStack manages the underlying compute instances hosting these nodes,

ensuring appropriate GPU hardware availability. This flow can be enhanced with custom schedulers implementing

fairness-aware policies. Custom schedulers can intercept scheduling requests, evaluate fairness metrics across tenants,

and make allocation decisions balancing immediate resource requests with long-term fairness objectives (Goswami et al.,

2016). Implementation typically involves webhook-based scheduler extenders or complete custom scheduler

replacements.

4. Fairness Mechanisms and Scheduling Policies

4.1 Fairness Metrics and Objectives

Defining fairness in GPU resource allocation requires careful consideration of multiple competing objectives.

Common fairness metrics include proportional fairness, where resources are allocated proportionally to tenant

entitlements; max-min fairness, which maximizes the minimum allocation received by any tenant; and dominant resource

fairness (DRF), which extends max-min fairness to multi-resource scenarios (Sengupta et al., 2013). For AI workloads,

fairness metrics must account for workload heterogeneity. Training jobs may require sustained GPU access over hours or

days, while inference services need low-latency GPU availability for milliseconds at a time. A purely time-based fairness

metric may disadvantage inference workloads, while allocation-count-based metrics may unfairly favor training jobs (Hu

et al., 2018). Effective fairness mechanisms must incorporate workload-aware metrics that account for these differences.

4.2 Priority-Based Queuing

Priority-based queuing assigns different priority levels to workloads based on tenant service-level agreements

(SLAs), workload type, or other policy criteria. High-priority workloads receive preferential GPU access, potentially

preempting lower-priority tasks. Hong et al. (2017a) demonstrated that weighted fair queuing combined with priority

mechanisms achieves near-ideal fairness while accommodating differentiated service requirements. Implementation in

Kubernetes environments typically leverages priority classes, which influence pod scheduling order and preemption

decisions. However, standard Kubernetes priority preemption operates at the pod level, not the GPU device level,

requiring coordination with device plugins to achieve fine-grained GPU-aware preemption (Oh et al., 2018). Custom

admission controllers can enforce policies ensuring high-priority pods receive GPU allocations even when resources are

scarce.

4.3 Workload-Aware Preemption

Preemption mechanisms enable schedulers to reclaim GPU resources from running workloads to satisfy higher-

priority or fairness-constrained allocations. Traditional GPU architectures lack native preemption support, requiring

software-based approaches such as checkpoint-restart or cooperative yielding (Tanasic et al., 2014). Checkpoint-restart

saves workload state and terminates execution, later resuming from the checkpoint when resources become available.

Cooperative yielding, implemented in systems like GPUShare, relies on applications periodically checking for

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 940

preemption signals and voluntarily releasing GPU resources (Goswami et al., 2016). This approach minimizes overhead

but requires application awareness or middleware intervention. For containerized environments, preemption can be

implemented through container lifecycle hooks, enabling graceful shutdown and state preservation before GPU resource

reclamation. Workload-aware preemption considers job characteristics when making preemption decisions. For instance,

nearly-complete training jobs may be exempted from preemption to avoid wasting invested computation, while long-

running jobs with frequent checkpointing may be preferentially preempted (Yu et al., 2018). Such policies require

schedulers to track workload progress and estimate completion times, adding complexity but improving overall system

efficiency.

4.4 Time-Slicing and Spatial Partitioning

GPU sharing can be achieved through time-slicing, where multiple workloads take turns accessing the entire

GPU, or spatial partitioning, where GPU resources are divided among concurrent workloads. Time-slicing provides

strong isolation and simplifies resource accounting but introduces context-switching overhead and may increase latency

for interactive workloads (Menychtas et al., 2014). Spatial partitioning, implemented through techniques like streaming

multiprocessor (SM) allocation or GPU memory partitioning, enables true concurrent execution. Hu et al. (2016) showed

that intelligent SM allocation based on slowdown estimation achieves better fairness than naïve equal partitioning.

However, spatial partitioning requires careful management to prevent memory contention and ensure performance

isolation (Kato et al., 2012). Hybrid approaches combining time-slicing and spatial partitioning offer flexibility to

accommodate diverse workload mixes. Small inference tasks may share GPU resources spatially while large training jobs

receive time-sliced exclusive access. Gu et al. (2018) demonstrated that dynamic switching between sharing modes based

on workload characteristics improves both utilization and fairness compared to static approaches.

4.5 Capacity-Based Resource Models

Capacity-based resource models abstract GPU capabilities into measurable units enabling fine-grained

allocation and accounting. Yu et al. (2018) introduced CapSM, modeling GPU capacity in terms of streaming

multiprocessor availability and memory bandwidth. This model enables schedulers to enforce quotas and reservations

with greater precision than device-count-based approaches. Capacity models facilitate QoS guarantees by reserving

specific capacity levels for latency-sensitive workloads while allowing best-effort workloads to consume remaining

capacity. Dynamic eviction mechanisms can reclaim capacity from best-effort tasks when reserved capacity is needed,

ensuring SLA compliance (Yu et al., 2018). Implementation requires runtime monitoring of GPU utilization metrics and

dynamic adjustment of capacity allocations based on observed demand. Table 2 compares different fairness mechanisms

across key dimensions relevant to multi-tenant AI workloads.

Table 2: Comparison of Fairness Mechanisms

Mechanism Isolation

Quality

Overhead Workload

Suitability

Implementation

Complexity

Fairness

Granularity

Priority Queuing Medium Low Mixed workloads Low Coarse (tenant-

level)

Time-Slicing High Medium Batch training Medium Fine (job-level)

Spatial Partitioning Medium Low Concurrent

inference

High Fine (resource-

level)

Workload-Aware

Preemption

Medium-

High

Medium-

High

Heterogeneous

mixes

High Fine (job-level)

Capacity-Based

Allocation

High Medium QoS-sensitive

workloads

High Very Fine

(capacity-level)

5. Performance Implications and Trade-offs

5.1 Impact on Training Latency

GPU scheduling policies significantly impact training latency, defined as the time required to complete model

training to a target accuracy. Exclusive GPU allocation minimizes training latency by providing uninterrupted access, but

achieves poor utilization when training jobs exhibit bursty GPU usage (Becchi et al., 2012). Conversely, aggressive

sharing through fine-grained time-slicing increases training latency due to context-switching overhead and reduced

effective GPU availability. Hong et al. (2017a) demonstrated that fair queuing with work-conserving scheduling achieves

training latencies within 5-10% of exclusive allocation while significantly improving overall GPU utilization. Work-

conserving policies ensure that GPUs remain busy whenever pending work exists, avoiding idle periods that waste

capacity. For training workloads tolerant of modest latency increases, such approaches offer attractive trade-offs.

Preemption-based fairness mechanisms introduce additional latency through checkpoint-restart overhead. The impact

depends on checkpoint frequency and state size. Frequent checkpointing reduces lost work upon preemption but

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 941

increases I/O overhead during normal execution (Tanasic et al., 2014). Optimal checkpoint intervals balance these

competing concerns, typically ranging from minutes to hours depending on workload characteristics.

5.2 Impact on Inference Throughput

Inference serving presents distinct performance requirements compared to training, emphasizing low latency

and high throughput for individual requests. Hu et al. (2018) showed that specialized scheduling for DNN serving,

incorporating low-overhead profiling and interleaving, maintains inference latencies below service-level objectives while

supporting concurrent model execution. Their approach achieved millisecond-scale GPU switching, essential for meeting

strict latency targets. Spatial partitioning proves particularly effective for inference workloads, enabling multiple models

to execute concurrently on different GPU resources. However, memory contention can degrade throughput when

concurrent models exceed available GPU memory, requiring careful capacity planning (Kato et al., 2012). Adaptive

mechanisms that dynamically adjust concurrency levels based on observed latencies help maintain QoS guarantees.

Batch inference, where multiple requests are grouped for collective processing, amortizes GPU invocation overhead and

improves throughput. However, batching introduces queuing delays that increase individual request latency. Schedulers

must balance batch sizes against latency constraints, potentially using different batching strategies for latency-sensitive

versus throughput-oriented inference workloads (Margiolas & O'Boyle, 2016).

5.3 Cost Efficiency Considerations

Cost efficiency in multi-tenant GPU infrastructures depends on utilization rates, performance delivered per

dollar spent, and the value generated for tenants. Underutilized GPUs waste capital expenditure and operational costs,

while oversubscription leading to performance degradation reduces tenant satisfaction and potentially violates SLAs

(Patchamatla, 2018). Fair sharing mechanisms improve cost efficiency by increasing utilization without proportionally

degrading performance. Goswami et al. (2016) reported utilization improvements of 40-60% through middleware-based

GPU sharing while maintaining acceptable performance levels. These gains translate directly to cost reductions through

better amortization of GPU investments across tenant workloads. However, fairness enforcement incurs overhead

through scheduling computation, context switching, and monitoring. Menychtas et al. (2014) measured scheduling

overheads below 5% for disengaged scheduling approaches, demonstrating that well-designed mechanisms achieve

fairness without significant efficiency penalties. The key lies in balancing fairness granularity against overhead—

extremely fine-grained fairness may consume excessive resources for monitoring and enforcement.

5.4 Trade-off Analysis

The fundamental trade-off in GPU scheduling involves balancing fairness, performance, and efficiency. Strict

fairness enforcement may reduce overall system throughput by preventing efficient workload consolidation. Conversely,

pure efficiency optimization may lead to resource starvation for some tenants, violating fairness objectives (Sengupta et

al., 2014). Workload heterogeneity complicates this trade-off. Mixed workloads combining training and inference exhibit

different resource consumption patterns and performance sensitivities. Scheduling policies optimized for training may

perform poorly for inference, and vice versa. Adaptive approaches that adjust scheduling strategies based on workload

mix offer potential solutions but increase implementation complexity (Oh et al., 2018). Table 3 quantifies trade-offs

across different scheduling approaches based on representative research findings.

Table 3: Performance Trade-offs Across Scheduling Approaches

Scheduling Approach Avg. Training

Latency Impact

Inference

Latency (P95)

GPU

Utilization

Fairness Score

(0-1)

Implementation

Overhead

Exclusive Allocation Baseline (1.0×) 5-10 ms 35-45% 0.3-0.4 Minimal

Simple Time-Slicing 1.3-1.5× 15-25 ms 65-75% 0.7-0.8 Low

Weighted Fair Queuing 1.05-1.1× 8-12 ms 70-80% 0.85-0.95 Medium

Spatial Partitioning 1.1-1.2× 6-9 ms 75-85% 0.75-0.85 Medium-High

Adaptive Hybrid 1.08-1.15× 7-11 ms 80-90% 0.9-0.95 High

Note: Metrics synthesized from Hong et al. (2017ª), Hu et al. (2018), Goswami et al. (2016), and Gu et al. (2018).

5.5 Tenant Satisfaction and SLA Compliance

Ultimately, scheduling effectiveness must be evaluated through tenant satisfaction and SLA compliance metrics.

Tenants care about predictable performance, fair resource access relative to their entitlements, and cost-effectiveness.

Scheduling policies that achieve high utilization but introduce unpredictable performance variations may reduce

satisfaction despite technical efficiency (Gupta et al., 2011). SLA compliance requires schedulers to provide performance

guarantees, typically expressed as latency percentiles or minimum throughput levels. Capacity-based resource models

with reservations enable strong SLA guarantees by isolating reserved capacity from best-effort workloads (Yu et al.,

2018). However, strict reservations may reduce overall utilization, creating tension between SLA compliance and

efficiency objectives. Transparent fairness mechanisms that clearly communicate resource allocation policies and actual

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 942

allocations received help build tenant trust. Monitoring and reporting systems that provide visibility into GPU usage,

queue positions, and fairness metrics enable tenants to understand their resource consumption and plan workloads

accordingly (Sengupta et al., 2013).

6. Implementation Considerations and Challenges

6.1 Device Plugin Extensions

Implementing intelligent GPU scheduling in Kubernetes requires extending the standard device plugin

framework. Extensions must support additional capabilities including workload characterization, fairness metric tracking,

and coordination with custom schedulers. Device plugins can expose extended attributes describing GPU capabilities,

current utilization, and allocated capacity, enabling schedulers to make informed decisions (Patchamatla, 2018).

Integration with container runtime interfaces (CRI) enables device plugins to intercept container creation and enforce

allocation policies at the runtime level. This integration point allows implementation of time-slicing through runtime-

managed GPU access control or spatial partitioning through cgroup-based resource limits (Oh et al., 2018). However,

CRI extensions require careful design to maintain compatibility with standard Kubernetes components.

6.2 Cross-Layer Coordination

Effective GPU scheduling in Kubernetes–OpenStack environments requires coordination across infrastructure,

orchestration, and device layers. Information about tenant entitlements, workload characteristics, and fairness metrics

must propagate throughout the stack. This coordination can be achieved through shared metadata services, message

queues, or distributed consensus mechanisms (Gu et al., 2018). OpenStack metadata services provide one integration

point, allowing Kubernetes schedulers to query tenant quotas and entitlements defined in OpenStack. Conversely,

Kubernetes can report actual resource consumption back to OpenStack for billing and capacity planning purposes.

Bidirectional information flow ensures consistency between platform layers and enables unified resource management

(Patchamatla, 2018).

6.3 Monitoring and Profiling

Intelligent scheduling requires comprehensive monitoring of GPU utilization, workload performance, and

fairness metrics. Monitoring systems must collect fine-grained metrics including SM utilization, memory bandwidth

consumption, kernel execution times, and context-switch frequencies. These metrics inform scheduling decisions and

enable adaptive policy adjustments (Hu et al., 2018). Profiling infrastructure characterizes workload resource

consumption patterns, enabling workload-aware scheduling. Lightweight profiling techniques that impose minimal

overhead are essential for production deployments. Hu et al. (2018) demonstrated profiling overhead below 2% through

strategic sampling and offline analysis. Profiling data can be cached and reused for recurring workloads, amortizing

collection costs.

6.4 Policy Configuration and Management

Fairness policies must be configurable to accommodate diverse tenant requirements and organizational

objectives. Policy management systems should support declarative policy specifications, enabling administrators to

define fairness objectives, priority levels, and resource reservations without low-level scheduler modifications (Yu et al.,

2018). Policy languages can express complex rules such as "guarantee 30% GPU capacity to tenant A during business

hours with best-effort access otherwise." Policy validation and simulation tools help administrators understand policy

implications before deployment. Simulation using historical workload traces reveals potential fairness violations or

performance degradations, enabling policy refinement (Sengupta et al., 2014). Continuous policy evaluation in

production environments detects drift between intended and actual fairness outcomes, triggering alerts when corrections

are needed.

6.5 Fault Tolerance and Resilience

GPU scheduling systems must handle failures gracefully, including device failures, node failures, and scheduler

failures. Checkpointing mechanisms enable workload recovery after failures, though checkpoint overhead must be

balanced against recovery time objectives (Tanasic et al., 2014). Distributed scheduler architectures with leader election

provide fault tolerance for the scheduling control plane. Device-level fault detection requires monitoring GPU health

metrics and detecting degraded performance indicative of hardware issues. Automatic workload migration from

unhealthy GPUs to healthy alternatives maintains service availability (Kato et al., 2012). However, migration introduces

temporary performance disruptions and requires careful coordination to preserve fairness properties during the transition.

6.6 Security and Isolation

Multi-tenant GPU sharing raises security concerns including information leakage through shared memory, side-

channel attacks exploiting execution timing, and denial-of-service through resource exhaustion. Strong isolation

mechanisms are essential to prevent malicious or buggy workloads from impacting co-located tenants (Becchi et al.,

2012). Memory isolation can be enforced through GPU virtual memory mechanisms that prevent unauthorized access to

https://saudijournals.com/journal/sb/home

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 943

other tenants' memory regions. Execution isolation limits the impact of runaway kernels through timeout mechanisms

and resource quotas (Kato et al., 2012). However, complete isolation may conflict with efficiency objectives, as strict

partitioning reduces opportunities for statistical multiplexing and dynamic resource sharing.

7. CONCLUSION AND FUTURE DIRECTIONS

This paper has examined intelligent GPU scheduling and fairness mechanisms for multi-tenant AI workloads in

Kubernetes–OpenStack environments, building upon the foundational work of Patchamatla (2018) on optimizing

containerized multi-tenant infrastructures. The analysis reveals that effective GPU resource management requires careful

integration of scheduling policies across infrastructure, orchestration, and device layers, with explicit consideration of

fairness objectives alongside performance and efficiency goals. Key findings indicate that hybrid scheduling approaches

combining time-slicing with spatial partitioning, guided by workload-aware policies, achieve superior outcomes

compared to static allocation schemes. Weighted fair queuing mechanisms, as demonstrated by Hong et al. (2017a),

provide near-ideal fairness with minimal performance overhead. Capacity-based resource models, exemplified by

SMGuard (Yu et al., 2018), enable fine-grained QoS guarantees essential for heterogeneous workload mixes combining

latency-sensitive inference with throughput-oriented training.

The architectural integration of Kubernetes device plugins with OpenStack Nova and Ironic GPU management

presents both opportunities and challenges. While the layered architecture enables flexible deployment models, it

requires careful coordination to propagate fairness policies and workload characteristics throughout the stack. Cross-layer

information sharing through metadata services and monitoring infrastructure proves essential for maintaining consistency

and enabling informed scheduling decisions. Performance trade-offs between fairness, efficiency, and tenant satisfaction

necessitate adaptive scheduling approaches that adjust policies based on workload characteristics and system state.

Workload-aware preemption, dynamic capacity allocation, and priority-based queuing provide mechanisms for balancing

competing objectives. However, implementation complexity and operational overhead increase with policy

sophistication, requiring careful cost-benefit analysis. Future research directions include several promising areas. First,

machine learning-based scheduling policies that learn optimal allocation strategies from historical workload patterns

could improve upon hand-crafted heuristics. Second, integration with emerging GPU architectures supporting hardware-

level multi-tenancy and preemption may enable more efficient sharing with stronger isolation. Third, extension to

heterogeneous accelerator environments incorporating TPUs, FPGAs, and specialized AI chips would broaden

applicability beyond GPU-centric infrastructures. Fourth, development of standardized fairness metrics and benchmarks

for multi-tenant GPU systems would facilitate objective comparison of scheduling approaches and drive community

progress. Fifth, investigation of economic mechanisms such as auction-based allocation or dynamic pricing could align

resource allocation with tenant value generation rather than purely technical metrics. Finally, exploration of federated

scheduling approaches enabling GPU sharing across multiple Kubernetes clusters and OpenStack regions would address

increasingly distributed AI workload patterns.

The proliferation of AI applications ensures continued growth in GPU demand and intensifying pressure on

multi-tenant infrastructures to deliver fair, efficient resource allocation. Intelligent scheduling mechanisms incorporating

workload awareness, adaptive fairness policies, and cross-layer coordination represent essential capabilities for next-

generation cloud platforms supporting scalable AI workflows. This research contributes to the growing body of

knowledge on GPU resource management in containerized environments and provides practical insights for deploying

production-grade multi-tenant AI infrastructures.

REFERENCES

• Becchi, M., Sajjapongse, K., Graves, I., Procter, A., Ravi, V., & Chakradhar, S. (2012). A virtual memory based

runtime to support multi-tenancy in clusters with GPUs. Proceedings of the 21st International Symposium on High-

Performance Parallel and Distributed Computing, 97–108. https://doi.org/10.1145/2287076.2287090

• Chiobi, N. F. (2016). Integrating geospatial analytics and business intelligence for workflow optimization in

pharmaceutical supply chains. Scholars Journal of Economics, Business and Management, 3(12), 709–723.

https://doi.org/10.36347/sjebm.2016.v03i12.009

• Goswami, A., Young, J., Schwan, K., Farooqui, N., Gavrilovska, A., Wolf, M., & Eisenhauer, G. (2016). GPUShare:

Fair-sharing middleware for GPU clouds. Proceedings of the 2016 IEEE International Parallel and Distributed

Processing Symposium Workshops, 629–638. https://doi.org/10.1109/IPDPSW.2016.94

• Gu, J., Song, S., Li, Y., Luo, H., Qian, D., & Yuan, C. (2018). GaiaGPU: Sharing GPUs in container

clouds. Proceedings of the 2018 IEEE Intl Conference on Parallel & Distributed Processing with Applications, 469–

476. https://doi.org/10.1109/BDCLOUD.2018.00077

• Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., & Ranganathan, P. (2011). GViM: GPU-

accelerated virtual machines. Proceedings of the 3rd ACM Workshop on System-level Virtualization for High

Performance Computing, 17–24.

https://saudijournals.com/journal/sb/home
https://doi.org/10.1145/2287076.2287090
https://doi.org/10.1109/IPDPSW.2016.94
https://doi.org/10.1109/BDCLOUD.2018.00077

Lova Gautham Pemmadi et al., Sch. Bull., Vol-4, Iss-12 (Dec, 2018): 936-944

Available online: https://saudijournals.com/journal/sb/home 944

• Hong, C.-H., Spence, I., & Nikolopoulos, D. S. (2017a). FairGV: Fair and fast GPU virtualization. IEEE

Transactions on Parallel and Distributed Systems, 28(12), 3472–3485. https://doi.org/10.1109/TPDS.2017.2717908

• Hong, C.-H., Spence, I., & Nikolopoulos, D. S. (2017b). GPU virtualization and scheduling methods: A

comprehensive survey. ACM Computing Surveys, 50(3), Article 35. https://doi.org/10.1145/3068281

• Hu, Q., Shu, J., Fan, J., & Lu, Y. (2016). Run-time performance estimation and fairness-oriented scheduling policy

for concurrent GPGPU applications. Proceedings of the 2016 45th International Conference on Parallel Processing,

57–66. https://doi.org/10.1109/ICPP.2016.14

• Hu, Y., Rallapalli, S., Ko, B., Govindan, R., & Srivastava, M. (2018). Olympian: Scheduling GPU usage in a deep

neural network model serving system. Proceedings of the 19th International Middleware Conference, 53–

66. https://doi.org/10.1145/3274808.3274813

• Joseph, C. (2013). From fragmented compliance to integrated governance: A conceptual framework for unifying risk,

security, and regulatory controls. Scholars Journal of Engineering and Technology, 1(4), 238–250.

• Kato, S., McThrow, M., Maltzahn, C., & Brandt, S. A. (2012). Gdev: First-class GPU resource management in the

operating system. Proceedings of the 2012 USENIX Annual Technical Conference, 401–412.

• Margiolas, C., & O'Boyle, M. (2016). Portable and transparent software managed scheduling on accelerators for fair

resource sharing. Proceedings of the 2016 International Symposium on Code Generation and Optimization, 82–

93. https://doi.org/10.1145/2854038.2854040

• Menychtas, K., Shen, K., & Scott, M. L. (2014). Disengaged scheduling for fair, protected access to fast

computational accelerators. Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, 301–316.

• Oh, J., Kim, S., & Kim, Y. (2018). Toward an adaptive fair GPU sharing scheme in container-based

clusters. Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing, 476–

479. https://doi.org/10.1109/FAS-W.2018.00029

• Patchamatla, P. S. (2018). Optimizing Kubernetes-based multi-tenant container environments in OpenStack for

scalable AI workflows. International Journal of Advanced Research in Education and

Technology, 5(3). https://doi.org/10.15680/ijarety.2018.0503002

• Sengupta, D., Belapure, R., & Schwan, K. (2013). Multi-tenancy on GPGPU-based servers. Proceedings of the 6th

International Systems and Storage Conference, Article 3. https://doi.org/10.1145/2465829.2465830

• Sengupta, D., Goswami, A., Schwan, K., & Pallavi, K. (2014). Scheduling multi-tenant cloud workloads on

accelerator-based systems. Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, 513–524.

• Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., & Valero, M. (2014). Enabling preemptive

multiprogramming on GPUs. Proceedings of the 41st Annual International Symposium on Computer Architecture,

193–204.

• Yu, C., Bai, Y., Yang, H., Cheng, K., & Yuhao, G. (2018). SMGuard: A flexible and fine-grained resource

management framework for GPUs. IEEE Transactions on Parallel and Distributed Systems, 29(12), 2681–

2694. https://doi.org/10.1109/TPDS.2018.2848621

https://saudijournals.com/journal/sb/home
https://doi.org/10.1109/TPDS.2017.2717908
https://doi.org/10.1145/3068281
https://doi.org/10.1109/ICPP.2016.14
https://doi.org/10.1145/3274808.3274813
https://doi.org/10.1145/2854038.2854040
https://doi.org/10.1109/FAS-W.2018.00029
https://doi.org/10.15680/ijarety.2018.0503002
https://doi.org/10.1145/2465829.2465830
https://doi.org/10.1109/TPDS.2018.2848621

