
 

Citation: Fakhar Alam, Muhammad Shoaib, Sajid Ali, Saeed Ahmad, Muhammad Idrees, Sofia Batool, Syed Wajahat Ali 
Bukhari (2024). Killing Motion of Static Cylindrically Symmetric Spacetimes in the f(R) Gravity. Sch Bull, 10(10): 267-
274. 
 

 

         267 

 
 
 

 
 

Scholars Bulletin 
Abbreviated Key Title: Sch Bull  

ISSN 2412-9771 (Print) | ISSN 2412-897X (Online) 

Scholars Middle East Publishers, Dubai, United Arab Emirates 

Journal homepage: https://saudijournals.com  
 

 Subject Category: Mathematics 
 

Killing Motion of Static Cylindrically Symmetric Spacetimes in the f(R) 

Gravity 
Fakhar Alam1, Muhammad Shoaib1*, Sajid Ali2, Saeed Ahmad2, Muhammad Idrees3, Sofia Batool4, Syed Wajahat Ali 

Bukhari5 
 
1Department of Mathematics, The Islamia University of Bahawalpur, Pakistan 
2Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan, Pakistan 
3Department of Mathematics, Ghazi University Dera Ghazi Khan 
4Department of Mathematics, University of Narowal  
5Department of Mechatronics Engineering, National University of Sciences & Technology (NUST) 
 

DOI: https://doi.org/10.36348/sb.2024.v10i10.003                  | Received: 13.11.2024 | Accepted: 18.12.2024 | Published: 28.12.2024 
 

*Corresponding author: Muhammad Shoaib 
Department of Mathematics, the Islamia University Bahawalpur, Pakistan 

 

Abstract  
 

In this study we have studied "Killing Motion of Static Cylindrically Symmetric Spacetimes in f(R) Gravity" by using 

algebraic and direct integration techniques. This study investigates the Killing motions of static cylindrically symmetric 

spacetimes with in framework of f(R) gravity, a generalization of Einstein’s General Relativity. We explore the existence 
of Killing vector fields to understand the symmetries and conserved quantities in such spacetimes. By analysing the 

modified field equations, we determine the constraints imposed by f(R) gravity on the geometry and dynamics of 

cylindrically symmetric spacetimes. These contribute to understanding the interplay between symmetry properties and 

gravitational theories beyond General Relativity. The results have implications for astrophysical and cosmological models 
influenced by alternative gravity theories. We discussed four cases and found that the dimension of Killing vector fields is 

either three, four or ten. 
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1. INTRODUCTION 
The General Theory of Relativity which was 

proposed by Albert Einstein in 1915, has revolutionized 

our understanding of gravity by explaining it as the 
curvature of space-time caused by the mass and energy. 

While this theory provides a robust framework for 

explaining gravitational interactions on cosmic scales, it 

also paved the way for exploring deeper mysteries of the 
universe [1-4]. Among these, the concept of Dark Energy 

emerged, an enigmatic force which is driving the 

accelerated expansion of the universe, challenging our 

understanding of cosmology and space-time dynamics 
[5]. To address such complexities, several modifications 

have been proposed to extend General Relativity (GR). 

Among these, the f(R) theory, introduced by Buchdahl in 

1970, stands out as a significant development. This 
theory modifies the Einstein-Hilbert action by 

introducing a functional dependence on the Ricci scalar 

R, offering a broader framework for gravitational 
dynamics [6, 7]. Despite its broader framework, 

obtaining direct solutions in f(R) theory remains a 

significant challenge. The non-linear nature of the 

modifications introduces complexities that make 
analytical solutions difficult to derive, necessitating 

advanced mathematical techniques and numerical 

approaches for solving such equations [8]. To address 

these challenges, various symmetry constraints, such as 
the Homothetic symmetry, conformal symmetry, and 

Killing symmetry are often employed. These symmetries 

help simplify the problem by reducing its degrees of 

freedom and making the equations more tractable. 
Additionally, they provide conservation laws that not 

only define the manifestant properties of the contents of 

matter but also reveal geometric structure of the space-

time [9]. 
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A notable class of space-times accordant with 

asymptotic uniformity includes the matter which 
contains constant spherically symmetric space-times. As 

a step beyond spherical symmetry, cylindrically 

symmetric spacetimes serve as a significant alternative. 

Levi-Civita, in 1917, derived the most general solutions 
for static cylindrically symmetric spacetimes, laying the 

foundation for further exploration in this domain [10]. 

Symmetry constraints, such as Killing vector fields, 
simplify spacetime structures by reducing degrees of 

freedom and providing conservation laws, aiding in the 

study of both matter properties and spacetime geometry 

[11-15]. 

 

It is important to note that a vector field K is classified as a Killing vector field if it satisfies the Killing equation, given by 

 , 

In equation (1)  represents the metric tensor's Lie derivative along the vector field  this operation measures 

how the metric tensor changes when one flows along the direction specified by the vector field  

 

2. Field Equation Formulation in f(R) Gravity 

Consider, in an usual coordinates, a static cylindrically symmetric spacetimes  given by 

 correspondingly with line element (reference)  

               (2.1) 

 

In which  are r’s non-zero functions only. The above mentioned space-
times (2.1) concede there linearly independents killing vector fields which are (reference) 

                                                                          (2.2) 

 

The Ricci’s non-zero components of tensors for the space-times (2.1) are (reference) 

 

 

 

                           (2.3)  

 

Where, the overhead prime denotes derivative with reference to r. Supposing the source of energy -momentum 

tensor as perfect fluid i.e.  where  is the density of matter, the pressure is denoted as p, and 

 is the four-velocity vector which is termed as   we have  

Field equation in f® gravity are (reference) 

                                                                     (2.4) 

 

Where  is the Ricci scalar’s function R, 

the coupling constant is k, standard energy momentum tensor is  and  where the covariant 

derivative operator is . Using Equations. (2.1) and (2.3) in (2.9) together with non-zero components of energy -

momentum tensor, we find  
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   (2.5) 

    (2.6) 

   (2.7) 

 
To fond the solutions of equations (2.5-2.7), by putting some restrictions on the metric coefficients together with 

the condition given in , we classify space-times (2.1) (refer). Classification has the cases as follows: 

(i)   

(iv)   

(vii)   

(Xiii)   

Using  in equations (2.5-2.7) after some simplifications gives 

                                                           (2.8) 
 

With the two unknown which are named as  . To solve this equation, now, we suppose solution of the form 

 where This assumption leads to  and  therefore, space-time 

(2.1) takes the form, after appropriate rescaling of z  

                 (2.9)  

Where  It is important to mention here that we have discussed the procedure of finding the solution in only 

one case. Rest of the cases are similar to deal. 

 

3 Killing Motions of Static Cylindrically Symmetric Spacetimes  

Case (I) 

In this case, the space-time has form: 

                 (3.1) 

 
Now, we find the above space-time’s Killing vector fields (3.1) by the help of equation 

                                                         (3.2) 

 
Using equation (3.1) in equation (3.2), we have ten first-order non- linear partial differential equations as follows: 
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         (3.5) 

                    (3.6) 

 (3.7)                           (3.7) 

                    (3.8) 

                                         (3.9) 

                         (3.10)  

                  (3.11) 

                                        (3.12) 

 

From equations (3.7) and (3.12), we have  in which  are 

integration’s functions need to determine. Now, using the value of  in equation (3.3), we get  

 
 

Where is another function of integration. On the same pattern, if we substitute the value of  in equation 

(3.10) we obtained the value of  which is 

 

Where is another function of integration. Now, we have the following initial system: 

                               (3.13) 
 

After some tedious calculations and avoiding lengthy calculations we get the following result 

                                                 (3.14) 

 

In this case, the generators of the Killing algebra are represented by X. 
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Case (II) 

In this case, the space-time metric has the form: 

   (3.15) 

 

 

Now, we find above space-time’s Killing vectors fields (3.2.1) with the help of equation (3.2). Using equation 
(3.15) in equation (3.2), we have the ten first-order non-linear partial differential equations as follows: 
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From equation (3.20), we have  where  is function of integration need to be 

determined. Similarly after solving these equation we get the initial system 

              (3.26) 
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Case (III) 

In this case, the space-time has following form: 

                    (3.28) 

 

Now, we find above space-time’s KVFs (3.38) with the help of equation (3.2). Using equation (3.28) in equation 

(3.2), we have the following ten firs-order non-linear differential equations: 
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From equation (3.29), (3.33), (3.35) and (3.3.7) we get the following initial system: 

  (3.38) 

 
By skipping the lengthy calculations, we arrive at directly at the final system: 
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The spacetime in this case has the form: 
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Now, we find above space-time’s Killing vectors fields (3.40) with the help of equation (3.2), we have the ten 

first-order non-linear partial differentia equations as follows: 

 (3.41)  (3.42)  (3.43) 

 (3.44)  (3.45)  (3.46) 

 (3.47)  (3.48)  (3.49) 

 (3.50)  

 
From equation (3.45), (3.47),(3.50) and (3.41) after solving we get the initial system: 

 (3.51) 

 

By avoiding extensive calculations we directly reach the final system: 

 (3.52) 

 
Generator form 

  , ,   

   
 

CONCLUSIONS 
In this study, we have discussed the static 

cylindrically symmetric space-time’s Killing vector 

fields in f (R) gravity. Four cases exist in this study. 
Following results have been obtained by studying every 

case: 

In case (i) 3 is the Killing vector field’s dimension. 

In case (ii) the dimension of Killing vector field is 4. 
In the cases (iii) and (iv), dimension of Killing vector 

fields is 10. 
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