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Abstract  
 

The goal of this paper is to derive the Lie algebra of Killing vector fields for the locally rotationally symmetric Bianchi 
type-I spacetime within the framework of f(Q) gravity, where f(Q) gravity is a modified gravitational theory that extends 

General Relativity by introducing a function of the non-metricity tensor Q to explore alternative models of gravity. To 

achieve this, various algebraic methods and direct integration techniques are employed. Different metric functions are 

analyzed, and the associated Killing vectors are determined for each case. It is observed that the spacetime under 
investigation can support either4, 6, or 10 Killing vector fields. 
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1. INTRODUCTION 
The concept of Killing vector fields was 

introduced by the German mathematician Wilhelm 

Killing in the late 19th century. Killing’s work focused 

on exploring the symmetries of a Riemannian or pseudo-
Riemannian manifold. A vector field K is termed a 

Killing vector field if it satisfies the Killing equation 

0L g
K 

= [1, 2]. Locally rotationally symmetric 

(LRS) spacetimes are a subclass of Bianchi type models 

that exhibit specific symmetry properties. Bianchi type-I 
models are homogeneous but not necessarily isotropic, 

meaning they have spatial symmetry but not necessarily 

uniformity in all directions. Locally rotationally 

symmetric models are particularly interesting as they 
retain rotational symmetry around a specific axis while 

allowing for general homogeneity. These models are 

used to study cosmological scenarios where the 

universe's large-scale structure possesses certain 
symmetrical features [3, 4].  

 

The concept f(Q) gravity represents a 

generalization of Einstein's General Theory of Relativity. 

Introduced by researchers in recent years, f(Q) gravity is 

a modification where the Einstein-Hilbert action is 
replaced by a more general function of the Q-tensor. The 

Q-tensor, which is related to the torsion of the spacetime 

manifold, extends the gravitational theory beyond the 

classical framework. Before f(Q) gravity, several 
theories of gravity were developed to address various 

aspects of gravitational phenomena. Notably, General 

Relativity (GR), formulated by Albert Einstein in 1915, 

remains the cornerstone of modern gravitational theory. 
GR describes gravity as the curvature of spacetime 

caused by mass and energy. Other theories, such as 

Scalar-Tensor Theories and f(R) gravity (where the 

action is a function of the Ricci scalar R), were developed 
to address specific limitations and anomalies within the 

framework of GR [5-7]. 

 

General Relativity, a refined theory of 
gravitation, characterizes gravity as a fundamental 

feature of spacetime's geometry. The theory connects the 

curvature of spacetime directly to the matter present 

through the Einstein field equations [8, 9]. The nonlinear 
nature of these field equations makes it challenging to 
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identify exact solutions that accurately represent physical 

situations. To obtain exact solutions for Einstein's field 
equations and to classify them, it is essential to impose 

specific symmetry constraints. Among the most 

interesting symmetry constraints are Killing, homothetic, 

conformal, and self-similar vector fields. These 
symmetries offer essential insights into the physical 

characteristics of matter and the geometric properties of 

spacetime. Our universe permits matter to follow specific 

conservation laws under particular conditions. These 

conservation laws can also be explored by examining 
various symmetries. This paper focuses on the 

classification of the Lie algebra of Killing vector fields 

for Locally Rotationally Symmetric Bianchi type-I 

Spacetimes in the context of f(Q) gravity. It is important 
to note that a vector field K is classified as a Killing 

vector field if it satisfies the Killing equation, given by 

 

 

, 0
K
L g g K g K g K  

    = + + = ,           (1) 

 

In equation (1) L
K

 denotes the Lie derivative of the metric tensor g


 along the vector field K  This operation measures 

how the metric tensor changes when one flows along the direction specified by the vector field  

 

LRS Bianchi Type I Space Times to Solve Field Equations 

The ( )f Q  gravity action S is [10]. 

 

( ) 4 ,
2

f Q
S L d x gm

 
 
 

= + −
                          

(2)

 
 

Where 𝑔 denotes the determinant of metric tensor and Lm  is the matter Lagrangian. Metric tensor led to equations of 

motions upon variation of action, which are [10]. 
 

2 1
( 2 )

2
a ai aig f P fg f P Q Q P Ta c cQ Qbc bc bai aib bcg

 
 
 

 − − + − =
−

           (3) 

 

With respect to the non-metricity scalar Q, f
Q

 is the derivative of (𝑄), P
bai

 is the non-metricity tensor, aP
bc

 is the 

super-potential tensor and T
bc

 denote the EMT. LRS Bianchi type-1 was considered as a background metric to solve Eq 

(3), which is [1]. 

 
2 2 2 2 2 2 2( ) ( ) ,ds dt t dx t dy dz   = − + + +                    (4) 

 

The functions alpha = alpha (t) and beta = beta 

(t) are non-zero functions dependent on the cosmic time 

“t”. When alpha = beta, the spacetimes described by 
equation (5) become an essential class of solutions in 

General Relativity, specifically representing the 

Friedmann–Lemaître–Robertson–Walker (FLRW) 

spacetimes. These spacetimes have been extensively 
examined within the field of cosmology. Comprehensive 

studies on FLRW cosmologies within the context of \( 

f(R) \) gravity can be found in various key reviews [11, 

12]. This paper aims to classify the spacetimes defined 

by equation (5) using conformal vector fields (CVFs) in 

the framework of f(R) gravity. This classification will 
focus on spacetime components that lead to different 

significant forms of spacetime. Notably, when alpha = 

beta, the spacetimes in equation (5) reach the highest 

dimension for CVFs, as reported in [13]. Conversely, the 
spacetimes can also admit a minimum number of Killing 

vector fields (KVFs) [14]. 

 

1 2 3, ,K K K
x y z

  
= = =
  

 and 4K z y
y z

 
= −

 
                  (5) 

 
Translations along the x, y, and z directions of 

vector fields represents the conservation of linear 

momentum in each respective direction. Angular 

momentum is generated by the rotational symmetry of 

Killing vector fields (KVFs). The primary objective of 

this study is to derive such vector fields within the 

framework of f(R) gravity, focusing on the spacetimes 

described by equation [5]. For the matter content in this 
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paper, a perfect fluid is assumed, with the EMT taking 

the standard form for such a fluid. 
 

( ) ,bc b c bcT p u u pg= + +
               

(6) 

Where p and   are pressure and density of the matter 

energy of the fluid element along the four-velocity vector 

𝑢. The set of field equations have been found upon 

utilizing Eqs. (4) and (6) in Eq.(3), which are [15, 16]. 

 

 

2

1
2 2 ,

2
Qf f

  


 

  
− − + =  

   

               

 

(7) 

 

2

2 2 2 2 ,
2

Q QQ

f
f Q f p

    

   

    
− − − − − =    
                    

(8) 

 

2

3 ,
2

Q QQ

f
f Q f p

      

     

    
− − − − − + − =    
     

        

 

(9)

 
 

Where the notation with the overhead dot (.) signifies the derivative with regard to the cosmic time ‘t’ are being 
considered. Additionally, the non-metricity scalar Q have been calculated for the spacetimes [17], which is 

 

2 4 .Q
  

 

 
= − − 

               

(10)

 
 
We are now using to solve equations (7) to (9). This approach helps to decrease complexities in above equations 

by involving constraints that restrict the component of the spacetime. Before adopting the above mentioned strategy, we 

use certain algebra techniques to simplify the equation: 

 

0.Q QQf Q f
      

     

    
+ − − + − =    

              

(11)

 

 

Equation [11], was simplified for both linear and non-linear f(Q) gravity. First, let suppose f(Q) is a linear gravity [18]. 

 

1 2( ) ,f Q c Q c= +   (12)

  

where 1 2, .c c   The case, when 1 1c =  and 2 0c =  leads to the GR. Choosing f(Q) as a linear, main advantage is that 

it reduces complexities of equations of motion (12), equation (11) takes the following form
2

1 0.c
    

   

  
+ − − =  

   

 As 1 0,c  therefore 

 

2

0.
    

   

  
+ − − =  

   

           (13)

 
 

To get solutions of equation [13], we apply 

constraints on the space time components. We became 

able to calculate non-metricity scalar Q values by 

applying the observed values of spacetime components 

in equation [10]. The results were represented in the form 

of Table as shown in Table 1: 
 

We now extend the linear case by selecting f(Q) to be a power law of the form: 

( ) ,mf Q cQ=
    

(14)
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Where , .c m  The correspondent of linear or 

constant f(Q) are not of our interest, such as m = 1 or m 

= 0 respectively. The reason of taking f(Q) to be of the 
form [14], is that it simplifies the cosmological constant 

problem. Positive aspect of choosing equation (14) is that 

a minor deviation from the A cold dark matter is 

observed when redshift increases. It was also noted that 
f(Q) power law models are also capable of describing 

late time acceleration. When equation (14) is combined 

with equation (11), we get 

 

2

( 1) 0.Q m Q
      

     

    
+ − − + − − =    

     

            (15)

 
 

As the above equation [15], is highly non-linear and need some restriction on spacetime components, so we solve it for the 
following possibilities:  

(A1) ( )t =  and constant. =  

(A2) constant =  and ( ).t =  

(A3) ( ),t =  ( )t =  and ,n =  where  \ 0 .n  

 

It is easy to observe that equation [15], is 

trivially fulfilled for the possibility (A1). It is important 

to note that, while evaluating possibilities (A2) and (A3), 
there are additional sub-possibilities since we have the 

ability to pick the multiple values of index ‘m’ in the 

confined region. By implementing such constraints on 

the spacetime components, for the possibilities (A2) and 
(A3) for the values of the non-metricity scalar Q and 

f(Q), are given in the Table 2:  

 

It is important to note that in the setup of f(Q) 
gravity to solve motion equations, we have non-metricity 

scalar Q two assumed functional forms. The first 

scenario involves f(Q) being a linear function of Q, 

which, with suitable choices for the constants in Eq [12], 
reduces to General Relativity (GR). In the second 

scenario, we consider f(Q) gravity in the form of a power 

law, as expressed in Eq [14]. Astrophysical point of view 

power law gravity models seem more important. Some 
significant aspects of these models are as follows. Such 

models primarily result in a system of ordinary 

differential equations (ODEs), which can yield 

physically realistic outcomes. Notably, power law 
gravity models have shown promise in addressing the 

cosmological constant problem. These f(Q) gravity 

models are considered viable due to their consistency 

with cosmological observations and their successful 
performance in solar system tests. These laws also mimic 

the hypothesises about universe expansion. Positive 

aspect of choosing equation [14], is that a minor 

deviation from the A cold dark matter is observed when 
redshift increases [19]. It also has been observed that late 

time acceleration can also be described by power law of 

f(Q) models [20]. Additionally, the power law model 

highlights a stronger impact of anisotropy compared to 
the simple linear model. Considering these 

characteristics of the power law f(Q) gravity model, the 

outcomes of this study can be divided into two main 

categories: cases where the power of the non-metricity 
scalar (Q) is positive (as seen in cases (vii), (ix), (x), (xi), 

and (xii)) and a case where the power is negative (case 

(viii)). Physically, models with a positive power of the 

non-metricity scalar (Q) are considered viable for 
explaining the inflationary period. Conversely, models 

with a negative power of (Q) are associated with dark 

energy cosmological models. 

 
A study of Killing motion in deduced classes of LRS 

Bianchi type-I metrics 

Considering anisotropic spacetimes within the 

framework of symmetric teleparallel gravity can lead to 
various astrophysical consequences, offering distinct 

perspectives compared to the limitations of general 

relativity (GR) and other modified gravity theories. One 

persistent challenge in GR, for instance, is that,  

 

 

 

 

 

 

 

 

 

 

Table 1: Solutions of Eq. (13) together with non-metricity scalar (Q) 
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Table 2: Solutions of Eq. (13) together with non-metricity scalar f(Q) 
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Currently, experimental efforts are made for 

large scale dark components identification, which make 

up most of the energy-matter content, as new 

fundamental particles have not yielded definitive results. 
One reason for studying anisotropic spacetimes in f(Q) 

gravity is that, if spacetime anisotropy exists, it enhances 

the alignment of astrophysical systems for observational 

studies. Models based on f(Q) gravity appear to provide 
natural solutions to various issues related to the dark 

aspects of cosmology [21, 22]. Symmetric teleparallel 

gravity models in the context of anisotropic spacetimes 

may offer a path toward a quantum approach to gravity, 

addressing some of the limitations of General Relativity 

(GR). At astrophysical scales, one of the benefits of f(Q) 
gravity is that it does not inherently require Lorentz 

Invariance or the Equivalence Principle, unlike GR. 

However, a complex nonlinear system of coupled PDEs 

(partial differential equations) is formed by the equations 
of motion in f(Q) gravity within anisotropic spacetimes. 

There are several important reasons for considering 
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conformal motions, a type of spacetime symmetry. 

Spacetime symmetries impose valuable constraints that 
simplify complex nonlinear equations. These constraints 

often emerge from conformal symmetry, which can 

transform partial differential equations (PDEs) into 

ordinary differential equations (ODEs), making them 
easier to solve. The presence of conformal symmetry 

thus simplifies computational efforts and facilitates the 

analysis of system dynamics. Additionally, studying 

conformal motions creates a natural link between 
geometry and matter through the Einstein field equations 

(EFEs) in symmetric teleparallel gravity. Conformal 

motions also give rise to conservation laws, aiding in the 

classification of spacetime. The classification 
established by the presence of conformal symmetry 

holds significance in both astrophysical and 

cosmological contexts. In astrophysics, conformal 

motion helps describe the internal structure of the 
gravitational field within compact objects. In the context 

of anisotropic spacetimes within symmetric teleparallel 

gravity, a key area of investigation involves exploring 
dark energy cosmological models and their relationship 

to astrophysical structures shaped by conformal 

symmetry. These structures include compact stars, 

gravastars, and black holes. In this section, the solutions 
presented in Table 2 are utilized to derive Killing vector 

fields (KVFs). The significance of KVFs lies in their role 

in generating conformal conservation laws. The 

generators of the conformal algebra are useful for 
characterizing metrics based on their conserved 

quantities, with the conformal factor being crucial in this 

process. For example, when the conformal factor 

vanishes during the calculation of Killing vector fields 
(KVFs), it results in isometries. Essentially, conservation 

laws are formulated by KVFs. KVF 
t




 the existence of 

time are linked with conservation of energy. Similarly, 

the translations along x, y and z directions are space-like 

KVFs , and
x y z

  

  
 respectively. These KVFs 

provide results which give rise to the linear momentum 
along their respective directions, Likewise, a non-zero 

constant conformal factor gives rise to homothetic vector 

fields (HVFs). The class of metrics that exhibit this 

property is referred to as self-similar solutions in General 
Relativity. Conformal symmetry has also been employed 

to study various cosmological phenomena [23, 24]. To 

achieve similar productive outcomes, this paper uses 

equation (1) to examine the conformal motions of the 
derived LRS Bianchi type-1 models within the context of 

f(R) gravity. 

 

CASE (I) 

 In this case, we have 

, tan , , ( 0).
3 4 3 4 3

m t m cons t where m m m = + =  

Now, using the values of   and   in equation (1) the 

spacetime, after suitable proper recycling is altered to 
become 

 

 
 

By utilizing the equations (17), (18), (19) and (20) then we get the following system of equations as 

0 1 1 1 23

3 4

2 3 3 4

( , y, z) ( , , ) ( , , )

( , , ) ( , , )

m
K A x K A x y z dx A t y z

m t m

K A t x z K A t x y

= = − +
+

= =



(27) 



 
 

Fakhar Alam et al, Sch Bull, Dec, 2024; 10(10): 245-253 
 

 

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates                                                                                       252 
 
 

 

Where 
1( , , ),A x y z 2 ( , , ),A t y z 3 ( , , )A t x z and

4 ( , , )A t x y  are functions of integration to be determined. Each 

solution's result is summarized here, with details omitted for shortness. When Locally Rotationally Symmetric (LRS) f(Q) 
gravity models case (i) include ten Killing vector fields, the conditions are described as follows. 

 

After the final calculation, the 10 Killing vector fields from Case (i) are as follows 

3 3 3 3 3 3

3 3 3 3 3 3

3 3

3 3

3 3 3

0

1 2 3 4 5 6

1

1 2 3 4 5 6 9

3 4

2 4 1 4 2
1 2 7 8

3 3

3 4
3 4 7 3

3

1

n

m x m x m x m x m x m x

m x m x m x m x m x m x

m x m x
m x m x

m x m x m x

K yn e yn e zn e zn e n e n e

K yn e yn e zn e zn e n e n e n
m t m

e m e m n
K tn e tn e zn n

m m

m
K tn e tn e yn n e

m

− − −

− − −

−
−

−

= + + + + +

−
 = − + − + − + +

= + + + + +

= + − + 34
4 10

3

.

m xm
n e n

m

−











+ + 
  

(28) 

The generator of Killing algebra are 

33

3 3

33

3 3

3 3

3 3 3

3

3 3

4
1

3 4 3

4
2

3 4 3

3 4

3 4 3 4

5 6

3 4

,

,

, ,

,

m xm x
m x m x

m xm x
m x m x

m x m x
m x m x m x

m x
m x m x

m eye
K ye te

t m t m x y m y

m eye
K ye te

t m t m x y m y

ze ze
K ze te K ze

t m t m x z t m t m x

e
K e K e

t m t m x

−−
− −

−
−

−

   
= − + +

 +   

   
= + + +

 +   

    
= − + = +

 +    + 

  
= − =

 +  

3

7

3 4

8 9 10

,

,

m x
e

K z y
t m t m x y z

K K and K
y x z

−
  

+ = −
+   

  
= = =
  

 

Now, Lie algebra of KVFs is what we have now founds,  1 2 1 2 2 1, ( ) ( )X X X X X X= −  by putting the values of 1X  

and 2X  we get the following value  1 2 3,X X X=   

Tabular form can be constructed as follows:  

 

Table 3 

 ,   1X   2X   3X   4X   5X   6X   7X   8X   9X   10X   

 1X    0    3X    4X    0    0    5X    6X    0    0    0   

2X   3X−   0   
5X   0   0   

6X   0   0   0   0   

3X   4X−   5X−   0   
7X   0   0   

8X  0   0   0   

4X   0   0   
7X−   0   

9X   0   0   0   0   0   

5X   0   0   0   
9X−   0   

10X   0   0   0   0   

6X   5X−   6X−   0   0   
10X−   0   0   0   0   0   

7X   6X−   0   
8X−   0   0   0   0   0   0   0   

8X   0   0   0   0   0   0   0   0   
10X   0   

9X   0   0   0   0   0   0   0   
10X   0   0   

10X   0   0   0   0   0   0   0   0   0   0   
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Where , , , , , , , , , ,            and   are constant. 

 

CONCLUSIONS 
In this research work we have studied the 

Killing vector fields along with their Lie algebra. We 

used the direct integration technique for finding the 

Killing vector fields of LRS Bianchi type-1 spacetime. 
Moreover we discussed the Lie algebra of Killing vector 

fields on different cases, i.e. Rectangular, Cylindrical 

and Spherical coordinates. In this study it is observed that 

the dimension of Killing vector fields is 15. Lie algebra 
of the KVFs is closed. 
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