

Invasive and Non-Invasive Techniques for Identifying Skeletal Muscle Fiber Composition: A Comprehensive Review

Ajay Kumar^{1*}, Anurodh Sisodia², Yogesh Chander Takhur³

¹Government College Chinnor, Gwalior, Madhya Pradesh, India

²LNIPE Gwalior, Madhya Pradesh, India

³Sports University of Haryana, Sonipat, Haryana, India

DOI: <https://doi.org/10.36348/jaspe.2025.v08i10.003>

| Received: 22.10.2025 | Accepted: 17.12.2025 | Published: 19.12.2025

*Corresponding author: Ajay Kumar

Government College Chinnor, Gwalior, Madhya Pradesh, India

Abstract

This study investigates various techniques for identifying and categorizing muscle fiber composition, highlighting both invasive and non-invasive methods. Invasive techniques, such as muscle biopsy, provide detailed insights into muscle structure and function, utilizing histochemical staining for myosin ATPase, myosin heavy chain isoform analysis, and biochemical identification of metabolic enzymes. These methods are vital for understanding skeletal muscle fiber diversity and their exercise responses. Alternatively, non-invasive approaches, including Tensiomyography, Magnetic Resonance Spectroscopy for muscle carnosine content, Ultrasound Imaging for muscle architecture, Genetic Analysis, and the 1-RM Test, offer valuable, less intrusive options to assess muscle function. By integrating invasive and non-invasive techniques, researchers can develop a comprehensive understanding of muscle biology, benefiting fields such as sports science, rehabilitation, and human health. Future research should explore how combining these methods can optimize personalized training and therapeutic interventions.

Keyword: Muscle Fiber, Identification, Biopsy, Tensiomyography, Carnosine and Muscle Architecture.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Muscle fiber classification is fundamental to understanding the versatility and adaptability of human skeletal muscles. Different muscle fibers contribute to variations in muscle function, performance, and plasticity, which are influenced by an individual's genetics, training, and physical activity. The classification of muscle fibers is based on various characteristics, including histochemical, biochemical, morphological, and physiological properties. Over time, research has developed methods to study muscle fiber composition, metabolism, and contractile properties, which are critical for improving athletic performance, rehabilitation practices, and overall muscle health (Yan *et al.*, 2011; Westerblad *et al.*, 2010).

Human skeletal muscles consist of three primary types of muscle fibers: Type I (slow-twitch), Type IIa (fast-oxidative glycolytic), and Type IIx (fast-twitch glycolytic). Each fiber type has distinct characteristics suited to different types of physical activity. Type I muscle fibers, known for their fatigue resistance, are ideal for endurance-based activities such

as long-distance running or cycling, as they possess a high capacity for aerobic energy production. These fibers are rich in mitochondria and myoglobin, which support sustained energy production (Westerblad *et al.*, 2010). In contrast, Type IIa fibers exhibit a combination of endurance and strength, producing energy through both aerobic and anaerobic pathways. They are typically involved in activities requiring a balance of power and endurance, such as middle-distance running (Hopwood *et al.*, 2023). Lastly, Type IIx fibers are highly specialized for short, powerful bursts of activity, making them essential for tasks requiring speed and power, such as sprinting or weightlifting. These fibers rely heavily on anaerobic energy pathways, enabling quick and forceful contractions (Plotkin *et al.*, 2021; Hall *et al.*, 2021).

Accurate classification of muscle fibers is essential for optimizing athletic training, rehabilitation strategies, and understanding muscle adaptation. Various methods for muscle fiber identification are employed in both research and clinical settings, each offering distinct advantages. Invasive techniques, such as muscle biopsies, allow for direct analysis of muscle tissue

samples, providing detailed insight into muscle fiber types. However, these methods can be uncomfortable and carry a risk of complications (Nilipour, 2019). Non-invasive alternatives, such as electromyography, ultrasound imaging, and Magnetic Resonance Imaging (MRI), offer insights into muscle fiber composition and function without the need for surgical procedures. These non-invasive techniques can assess muscle volume, architecture, and electrical activity, providing valuable data on muscle fiber characteristics (Baguet *et al.*, 2011; Kumar, 2023b).

Despite significant advancements, a gap exists in the comprehensive understanding of how invasive and non-invasive techniques correlate in the context of muscle fiber type classification. While invasive techniques offer detailed, direct measurements, their application is limited by ethical concerns and discomfort. On the other hand, non-invasive methods are more practical for wider populations but may lack the precision needed for certain scientific or clinical applications. Furthermore, there is limited research exploring how these methods can be integrated or used complementarily to provide a more holistic understanding of muscle fiber characteristics. This gap highlights the need for further studies to validate and refine non-invasive approaches and explore their alignment with invasive techniques.

This study explores both invasive and non-invasive techniques for muscle fiber identification, emphasizing the advantages and limitations of each method. Understanding these approaches will contribute to a deeper comprehension of muscle fiber diversity and its implications for human performance, rehabilitation, and health. By addressing the identified gaps, this research aims to bridge the divide between invasive and non-invasive methodologies, advancing the precision and applicability of muscle fiber classification in various domains.

METHODS

Invasive methods for identifying muscle fiber composition involve directly obtaining muscle tissue samples for analysis. Here are some common invasive methods:

Muscle biopsies can provide valuable information about the structure, function, and health of the muscle tissue. Different techniques, such as histochemical staining for myosin ATPase, identification of myosin heavy chain isoforms, and biochemical analysis of metabolic enzymes, can be used on the biopsy sample to classify muscle fibers and understand their characteristics. (Wayne Scott, Jennifer Stevens, 2001)

1. Histochemical staining for myosin ATPase:

This method involves staining muscle fibers to determine their myosin ATPase activity, which is related to the speed of muscle shortening. Based on the level of myosin ATPase activity, muscle fibers can be classified

as type I (slow-twitch) or type II (fast-twitch) fibers. The classification of human muscle fiber types based on myosin ATPase histochemical staining includes seven types, (Pette D, 1997) arranged from slowest to fastest contraction speed (Pette D, Peuker H, 1999): types I, IC, IIC, IIAC, IIA, IIAB, and IIB. (Staron, 1997) These divisions are determined by the intensity of staining observed at different pH levels during the staining process.

- **Type I:** Represents the slowest muscle fiber type with characteristics associated with endurance and oxidative metabolism.
- **Type IC:** An intermediate fiber type with staining characteristics closer to type I fibers, indicating a moderate contraction speed and metabolic profile.
- **Type IIC:** Another intermediate fiber type showing characteristics between type I and type IIA fibers.
- **Type IIAC:** Considered faster than the intermediate types, with staining characteristics more similar to type IIA fibers.
- **Type IIA:** A fast-twitch fiber type with characteristics suited for moderate-speed contractions and a mix of oxidative and glycolytic metabolism.
- **Type IIAB:** Exhibits staining characteristics between type IIA and IIB fibers, representing an intermediate phenotype.
- **Type IIB:** The fastest muscle fiber type associated with high-speed contractions and glycolytic metabolism.

It is important to note that the classification of muscle fibers into these seven types based on myosin ATPase staining is subjective and can vary among researchers. The muscle fiber with the fastest staining rate in histochemical myosin ATPase staining is typically associated with the type IIB fiber. (Taylor AW, Essen B, 1974) Different interpretations of staining intensities at various pH levels may lead to variations in how individual muscle fibers are categorized. Therefore, while these seven fiber types provide a framework for understanding muscle fiber diversity, researchers may group fibers differently based on their specific research objectives or interpretations of staining characteristics.

2. Myosin heavy chain isoform identification:

Myosin heavy chain identification is a method used to classify muscle fibers based on the isoforms of myosin present in the fibers. Myosin is a protein involved in muscle contraction, and different isoforms of myosin heavy chains can influence the contractile properties and metabolic characteristics of muscle fibers. The identification of myosin heavy chain isoforms plays a crucial role in muscle fiber typing and classification. Different myosin heavy chain isoforms are associated with specific muscle fiber types, such as slow-twitch (Type I), fast-twitch oxidative (Type IIA), and fast-

twitch glycolytic (Type IIB) fibers. The co-expression of specific myosin heavy chain isoforms in muscle fibers contributes to their contractile properties and metabolic characteristics.(Fry AC, Allemeier CA, 1994; Staron, 1997)

There are several techniques used for myosin heavy chain identification:

- Immunohistochemical Analysis: This method involves using specific antibodies against different myosin heavy chain isoforms to identify and localize the presence of specific isoforms in muscle fibers. This technique involves staining muscle tissue sections with antibodies that bind to specific myosin heavy chain isoforms, allowing researchers to visualize and distinguish between different isoforms within individual muscle fibers. By examining the staining patterns of different myosin heavy chain isoforms, researchers can classify muscle fibers into distinct types based on their isoform composition. (Wayne Scott, Jennifer Stevens, 2001)
- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE): This technique separates proteins based on their molecular weight using an electric field in a gel matrix. By running muscle samples through SDS-PAGE, researchers can separate and identify different myosin heavy chain isoforms present in the muscle fibers. (Fry AC, Allemeier CA, 1994; Staron, 1997)
- Single-Fiber Electrophoretic Separation (SDS-PAGE): This method allows for the quantitative analysis of myosin heavy chain isoforms in individual muscle fibers. By separating and quantifying the relative concentrations of different myosin heavy chain isoforms, researchers can determine the fiber type based on the isoform composition.(Hilber K, Galler S, Gohlsch B, 1999)
- It is important to note that advancements in myosin heavy chain identification techniques have improved the accuracy and specificity of muscle fiber typing, providing valuable insights into the functional diversity of skeletal muscle fibers. Researchers use myosin heavy chain identification to study muscle fiber composition, adaptations to exercise, and the role of different fiber types in various physiological processes.

3. Biochemical identification of metabolic enzymes:

Another method for typing muscle fibers involves identifying the metabolic enzymes present in the fibers. Enzymes reflecting the energy metabolism of the fiber can help categorize muscle fibers into different types based on their metabolic characteristics.(Hilber K, Galler S, Gohlsch B, 1999; Pette D, 1997)

A. Myosin ATPase Histochemistry:

- Myosin ATPase is an enzyme that hydrolyzes ATP to provide energy for muscle contraction.
- Histochemical staining for myosin ATPase activity can help differentiate muscle fibers into type I (slow-twitch) and type II (fast-twitch) based on their ATPase activity levels.

B. Enzyme Analysis:

- In addition to myosin ATPase staining, qualitative histochemistry for specific enzymes related to energy metabolism is performed.
- These enzymes reflect the metabolic pathways utilized by the muscle fibers, such as aerobic/oxidative or anaerobic/glycolytic pathways.

C. Classification Outcome:

- By combining information from myosin ATPase histochemistry and enzyme analysis, muscle fibers are classified into different types based on their metabolic characteristics.
- This classification approach typically results in the identification of three main fiber types: fast-twitch glycolytic (FG), fast-twitch oxidative (FOG), and slow-twitch oxidative (SO).

D. Correlation with Fiber Types:

- The biochemical classification scheme helps in understanding the metabolic profiles of muscle fibers and their functional properties.
- It provides insights into how different fiber types rely on aerobic or anaerobic metabolism for energy production, contributing to variations in muscle performance and characteristics.

In summary, the biochemical classification of muscle fibers involves analyzing myosin ATPase activity and specific enzyme activities to categorize muscle fibers based on their metabolic properties, which plays a crucial role in understanding the functional diversity of muscle tissue.

These three methods provide valuable insights into the functional and metabolic properties of muscle fibers, allowing researchers and clinicians to better understand the diversity and adaptability of human skeletal muscle.

Non-invasive methods for identifying muscle fiber composition offer alternative approaches that do not require surgical procedures or tissue extraction. Here are some common non-invasive methods:

1. Tensiomyography (TMG):

TMG evaluates the morphofunctional potential of a muscle by measuring the radial enlargement of the muscle abdomen in response to electrical stimulation. The time to muscle contraction measured by TMG is correlated with the proportion of slow-twitch muscle

fibers. Tensiomyography (TMG) can be used to determine muscle fiber properties by assessing the contractile properties and muscle tone of skeletal muscles. TMG is a non-invasive and cost-effective tool that provides valuable insights into muscle characteristics. By employing controlled electrical stimulation, TMG evaluates muscle contraction dynamics under isometric conditions, allowing for the assessment of muscle fiber composition and type. The stimulation of skeletal muscles with a single twitch stimulus using TMG generates a displacement-time curve, from which various parameters are extracted, including maximal radial displacement (Dm), contraction time (Tc), time delay (Td), sustain time (Ts), and half-relaxation time (Tr). These parameters reflect the contractile properties of the muscle and can provide information on muscle fiber composition and type distribution. Studies have demonstrated the utility of TMG in examining muscle fiber properties. For example, Šimunić *et al.* (2018) used TMG to assess the contractile properties of lower limb skeletal muscles in master endurance and power athletes, showing differences in contraction times and muscle tone related to the proportion of type I and type II muscle fibers. Additionally, TMG has been employed to monitor changes in muscle properties following training interventions, providing insights into the adaptations of muscle fibers to specific exercise stimuli. Overall, TMG serves as a valuable tool for determining muscle fiber properties by evaluating muscle contractile characteristics non-invasively. By analyzing the parameters derived from TMG measurements, researchers and practitioners can gain valuable information about muscle fiber composition, type distribution, and contractile properties, contributing to a better understanding of muscle function and performance.

2. Magnetic Resonance Spectroscopy (MRS):

MRS can be used to measure the carnosine content in muscles, which is indicative of muscle fiber type as fast-twitch fibers contain higher levels of carnosine.

Carnosine, a dipeptide composed of beta-alanine and histidine, has been linked to muscle fiber type composition and can potentially aid in identifying muscle fiber types.(Baguet A, Reyngoudt H, Pottier A, 2009) Research has shown that carnosine levels in muscles correlate with the proportion of fast-twitch (type-II) muscle fibers, which are associated with high-intensity, short-duration activities.(Derave W, Ozdemir MS, Harris RC, 2007) In contrast, muscles with lower carnosine levels tend to have a higher proportion of slow-twitch (type-I) muscle fibers, which are more suited for endurance activities. (Derave W, Ozdemir MS, Harris RC, 2007) Studies have demonstrated that athletes specializing in short-distance, high-intensity events such as sprinting exhibit higher levels of carnosine in their muscles, reflecting a predominance of fast-twitch muscle

fibers. (Baguet A, Reyngoudt H, Pottier A, 2009) On the other hand, athletes engaged in long-distance, endurance activities have lower muscle carnosine levels, indicative of a higher proportion of slow-twitch muscle fibers. (Baguet A, Reyngoudt H, Pottier A, 2009)

By measuring muscle carnosine content, either through invasive methods like muscle biopsies or non-invasive techniques like proton magnetic resonance spectroscopy (1H-MRS)(Bonny JM, Zanca M, Boespflug-Tanguy O, 1998), researchers and sports scientists can gain insights into the muscle fiber type composition of individuals. This information can be valuable for talent identification, optimizing training programs, and understanding the physiological characteristics of athletes in different sports disciplines. In conclusion, carnosine levels in muscles serve as a potential marker for identifying muscle fiber types, with higher levels associated with fast-twitch fibers and lower levels with slow-twitch fibers. Utilizing carnosine measurements can provide valuable information for athletes, coaches, and researchers in the field of sports science.

3. Genetic Analysis:

Genetic studies have identified specific gene variants that are linked to muscle fiber type, including the ACTN3, PPARA, and AMPD1 genes. (Flück *et al.*, 2019) These variants have been associated with differences in muscle fiber distribution, contractile properties, and metabolic characteristics. Genetic studies have revealed that the ACTN3 gene, in particular, plays a crucial role in fast-twitch muscle fibers, which are responsible for explosive movements such as sprinting and jumping. The presence of the R577X variant in the ACTN3 gene has been associated with an individual's sprint and power performance. Understanding the impact of this genetic variant can provide valuable insights into an athlete's potential for success in certain sports.(Broos *et al.*, 2016)(Mikami *et al.*, 2013)(Eynon *et al.*, 2013)(Vincent *et al.*, 2007) Additionally, the PPARA gene has been linked to endurance-related muscle fibers, involved in activities like long-distance running and cycling. Variants of the PPARA gene have been found to influence an individual's aerobic capacity, making it an important genetic factor to consider in endurance sports.(Flück *et al.*, 2019) Furthermore, the AMPD1 gene is associated with muscle metabolism and fatigue resistance. Variants of this gene have been shown to affect an individual's ability to produce energy during high-intensity exercise and may play a role in determining an individual's muscle endurance.(Yvert *et al.*, 2020)(Fuku *et al.*, 2019) Understanding the intricate interplay of these genetic variants and their influence on muscle fiber type not only provides valuable information for athletes and coaches looking to optimize training regimens but also sheds light on potential targeted interventions for muscle-related conditions and diseases.

4. Ultrasound Imaging:

Ultrasound imaging can be used to assess muscle architecture and potentially infer muscle fiber type based on characteristics such as muscle thickness and pennation angle.(D. A. Kumar, 2023b)

The identification of muscle fiber types is crucial in understanding muscle function and performance. Muscle architecture plays a significant role in fiber type identification through various characteristics such as pennation angle, fascicle length, and muscle thickness.(D. A. Kumar, 2023a)(D. A. Kumar, 2022) Different muscle fiber types have distinct architectural features that can be observed and analyzed to determine their functional properties:

A. Pennation Angle: The pennation angle, which refers to the angle at which muscle fibers attach to the tendon, can vary among different muscle fiber types. For example, muscles with higher pennation angles may have a higher proportion of fast-twitch fibers, which are responsible for generating quick and powerful movements.(Khare *et al*, 2023; D. A. Kumar, 2023b)

B. Fascicle Length: Fascicle length, or the length of individual muscle fibers within a muscle, is another architectural feature that can aid in fiber type identification. Fast-twitch muscle fibers tend to have shorter fascicle lengths compared to slow-twitch fibers. Muscles with longer fascicles are advantageous for tasks requiring rapid and forceful movements, indicating a potential dominance of fast-twitch fibers.(Kumar. Ajay, 2022; D. A. Kumar, 2022, 2023b)

C. Muscle Thickness: The amount of muscle mass present, or muscle thickness, can also provide insights into fiber type composition. Muscles with larger physiologic cross-sectional areas are often associated with a higher proportion of fast-twitch fibers, which are specialized for generating high force outputs.(A. Kumar & Jhajharia, 2020)

5. 1-RM Test:

There are alternative tests to estimate muscle fiber composition that are less invasive than a muscle biopsy. One such test is the %1-RM Test, which is a non-invasive indirect test used to estimate the predominant muscle fiber type - slow twitch or fast twitch. The Charles Poliquin Test and Dr F. Hatfield Test are variations of the %1-RM test used to estimate muscle fiber composition based on the number of repetitions performed at 85% and 80% of 1RM respectively. (Wood, 2010) The Charles Poliquin Test and Dr. F. Hatfield Test are methods to estimate muscle fiber type composition based on performance with submaximal loads. In the Charles Poliquin Test, participants first determine their one-repetition maximum (1RM) for a specific exercise. Using 85% of their 1RM, they then perform as many repetitions as possible in a single attempt. The number of repetitions achieved is interpreted as follows: less than 5 repetitions suggest a dominance of fast-twitch (FT)

muscle fibers, 5 repetitions indicate a mixed fiber type composition, and more than 5 repetitions suggest a dominance of slow-twitch (ST) muscle fibers. Similarly, in the Dr. F. Hatfield Test, participants determine their 1RM and use 80% of their 1RM to perform as many repetitions as possible in a single attempt. The interpretation of the results is slightly different: less than 7 repetitions indicate a dominance of fast-twitch (FT) muscle fibers, 7 or 8 repetitions reflect a mixed fiber type composition, and more than 8 repetitions suggest a dominance of slow-twitch (ST) muscle fibers. These tests provide insights into muscle fiber characteristics, aiding in tailored training approaches.

DISCUSSION

The findings of this study emphasize the value of both invasive and non-invasive techniques in identifying and categorizing muscle fiber composition, offering critical insights into applications in sports science, rehabilitation, and human health. Muscle biopsy, regarded as the gold standard, provides unmatched precision in analyzing muscle fiber types through histochemical staining, myosin heavy chain isoform analysis, and enzyme profiling. Staron *et al*. (1997) reported that in untrained individuals, approximately 53% of muscle fibers are Type I (slow-twitch), while Type IIa and IIx fibers constitute 32% and 15%, respectively. Endurance training can induce significant adaptations, as shown by Taylor *et al*. (1974), who observed a 5–10% increase in the proportion of Type I fibers after a 12-week endurance training program. However, the invasive nature of biopsies poses limitations, with minor complications reported in less than 2% of cases (Nilipour, 2019).

Advanced myosin heavy chain isoform analysis, using techniques like SDS-PAGE and immunohistochemical staining, further refines muscle fiber classification. Fry *et al*. (1994) demonstrated that trained sprinters exhibited a predominance of MyHC-IIx isoforms, present in over 80% of their muscle fibers, correlating with superior power and speed. In contrast, endurance athletes expressed MyHC-I isoforms in 60–70% of fibers (Wayne & Stevens, 2001), demonstrating the molecular basis of muscle functionality and adaptation. These findings underscore the relevance of molecular profiling in tailoring training regimens for athletes.

Biochemical profiling of metabolic enzymes provides additional insights into muscle fiber metabolism. Pette (1997) reported that oxidative enzyme activity in Type I fibers is 3–5 times higher than in Type II fibers, reflecting their aerobic capacity and endurance-oriented role. Conversely, glycolytic enzyme activity, particularly lactate dehydrogenase (LDH), is significantly elevated in Type II fibers, with 2.5 times higher LDH activity compared to Type I fibers (Hilber *et al*, 1999). Such metabolic profiling enables a deeper understanding of fiber-specific energy pathways and

their implications for performance. However, the invasiveness of this method introduces surgical risks and discomfort, which limits its repeated use, especially in longitudinal studies. Despite these challenges, muscle biopsy remains indispensable for understanding the intricate details of muscle biology.

Among non-invasive methods, Tensiomyography (TMG) has proven effective in assessing muscle contractile properties. Simunic *et al.* (2018) found that endurance athletes exhibited longer contraction times (Tc) of 25–30 ms, indicating a higher proportion of Type I fibers, whereas power athletes showed contraction times of 15–20 ms, reflective of Type II fiber dominance. Additionally, Dahmane *et al.* (2001) reported that maximal radial displacement (Dm) was significantly lower in power athletes (6.3 mm) compared to endurance athletes (9.2 mm), showcasing differences in muscle fiber composition. Its non-invasive nature makes it suitable for field applications, though its limited specificity for fiber typing constrains its accuracy when compared to biopsy-based methods. Nevertheless, TMG has shown reliable correlations between contraction time and muscle fiber distribution, making it a valuable tool for monitoring training adaptations.

Magnetic Resonance Spectroscopy (MRS) offers a reliable non-invasive method to estimate muscle fiber composition via carnosine levels. Baguet *et al.* (2011) found that sprinters had 38% higher carnosine levels compared to endurance athletes, correlating with a greater proportion of Type II fibers. Similarly, Derave *et al.* (2007) established a strong correlation ($R^2 = 0.85$) between carnosine levels and Type II fiber dominance across a cohort of athletes. This highlights the utility of MRS in profiling fiber composition *in vivo*. However, the high cost and equipment-intensive nature of MRS limit its accessibility and practicality for routine assessments, making it more suited for specialized research settings.

Genetic analysis further complements these methods by exploring the genetic basis of muscle fiber distribution. Broos *et al.* (2016) identified the ACTN3 R577X variant in 18% of sprinters, compared to 50% of endurance athletes, linking it to fast-twitch fiber predominance. Additionally, Flück *et al.* (2019) reported that the PPARG gene variant was associated with an 8% higher VO₂ max in endurance athletes, highlighting its role in slow-twitch fiber adaptation. These findings emphasize the potential for genetic screening in performance prediction and personalized training. However, genetic analysis is still limited in its functional interpretation and practical application, as it does not directly measure muscle fiber characteristics but rather predicts potential based on genetic markers.

Ultrasound imaging has emerged as a valuable tool for assessing muscle architecture. Kumar (2023) observed that fast-twitch fibers are associated with 20–

30% larger pennation angles, enhancing force production. Abe *et al.* (2000) reported that sprinters had 15% greater muscle thickness than endurance athletes, correlating with a higher fast-twitch fiber proportion. While ultrasound is non-invasive and provides valuable insights into muscle structure, its accuracy depends on the skill of the operator, highlighting the need for specialized training to maximize its effectiveness. The 1-RM test provides an indirect, practical method for estimating fiber type composition. Wood (2010) showed that participants performing fewer than 5 repetitions at 85% of 1-RM were predominantly fast-twitch fiber dominant, while those completing more than 8 repetitions were slow-twitch fiber dominant. This test serves as a cost-effective and accessible alternative for field-based assessments of muscle fiber composition. Although this test lacks the precision of laboratory-based techniques, its simplicity and accessibility make it an attractive option for sports practitioners. In conclusion, integrating invasive and non-invasive methods provides a comprehensive approach to understanding muscle fiber composition and function. Invasive techniques like biopsies and molecular analysis deliver unmatched precision, while non-invasive methods such as TMG, MRS, ultrasound imaging, and 1-RM testing offer practical, scalable solutions for broader application. The statistical data from various studies validate these methods, underscoring their utility in optimizing athletic performance, developing rehabilitation protocols, and advancing muscle biology research.

CONCLUSIONS

In conclusion, the present conceptual framework provides a comprehensive overview of various techniques for identifying and classifying muscle fiber composition, highlighting the intricate details of muscle biology and function. Through invasive methods such as muscle biopsies, researchers can obtain valuable insights into the structural and functional properties of muscle tissue. Techniques like histochemical staining for myosin ATPase and the identification of myosin heavy chain isoforms allow for the classification of muscle fibers based on their contraction speed, metabolic profiles, and functional properties. These methods play a crucial role in understanding the diversity of skeletal muscle fibers and their adaptations to different types of exercise and training. Furthermore, the research explored the significance of non-invasive methods like tensiomyography (TMG), Magnetic Resonance Spectroscopy, Genetic Analysis, Ultrasound Imaging and 1-RM Test as alternative approaches to assess muscle function without invasive procedures. Overall, the information presented in this research article underscores the importance of a comprehensive approach to studying muscle fibers, combining invasive and non-invasive techniques to gain a holistic understanding of muscle biology and function. By utilizing these techniques, researchers and clinicians can enhance their knowledge of muscle composition, performance capabilities, and physiological adaptations,

ultimately contributing to advancements in sports science, rehabilitation, and overall human health. The document serves as a valuable resource for individuals interested in the intricacies of muscle fiber composition and its implications for human performance and health.

REFERENCES

1. Baguet, A., Everaert, I., Hespel, P., Petrovic, M., Achten, E., & Derave, W. (2011). A new method for non-invasive estimation of human muscle fiber type composition. *PLoS ONE*, 6(7), Article e21956.
2. Baguet, A., Reyngoudt, H., Pottier, A., & et al. (2009). Carnosine loading and washout in human skeletal muscles. *Journal of Applied Physiology*, 106, 837–842.
3. Bonny, J. M., Zanca, M., Boespflug-Tanguy, O., & et al. (1998). Characterization in vivo of muscle fiber types by magnetic resonance imaging. *Magnetic Resonance Imaging*, 16, 167–173.
4. Boone, T. (2009). Introduction to exercise physiology. Elsevier eBooks, 1-11.
5. Čular, D., Babić, M., Zubac, D., Kezić, A., Macan, I., Peyré-Tartaruga, L. A., Ceccarini, F., & Padulo, J. (2023). Tensiomyography: From muscle assessment to talent identification tool. *Frontiers in Physiology*, 14, Article 1163078.
6. Derave, W., Ozdemir, M. S., Harris, R. C., & et al. (2007). Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. *Journal of Applied Physiology*, 103, 1736–1743.
7. Eynon, N., Hanson, E. D., Lucía, A., Houweling, P. J., Garton, F., North, K., & Bishop, D. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. *Sports Medicine*, 43(9), 803-817.
8. Flück, M., Krämer, M., Fitze, D. P., Kasper, S., Franchi, M. V., & Valdivieso, P. (2019). Cellular aspects of muscle specialization demonstrate genotype – Phenotype interaction effects in athletes. *Frontiers in Physiology*, 10, Article 526.
9. Fry, A. C., Allemeier, C. A., & Staron, R. S. (1994). Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle. *European Journal of Applied Physiology and Occupational Physiology*, 68, 246–251.
10. Fuku, N., Kumagai, H., & Ahmetov, I. I. (2019). Genetics of muscle fiber composition. Elsevier eBooks, 295-314.
11. Hilber, K., Galler, S., Gohlsch, B., & Pette, D. (1999). Kinetic properties of myosin chain isoforms in single fibers from human skeletal muscle. *FEBS Letters*, 455, 267–270.
12. Hopwood, H. J., Bellinger, P., Compton, H. R., Bourne, M. N., & Minahan, C. (2023). The relevance of muscle fiber type to physical characteristics and performance in team-sport athletes. *International Journal of Sports Physiology and Performance*, 18(3), 223-230.
13. Khare, S. P., Reddy, T. O., Kumar, D. A., & Sisodia, D. A. (2023). Muscle architecture and sports performance. *Journal of Sports Science and Nutrition*, 4(2), 254–257.
14. Kumar, A., & Jhajharia, D. B. (2020). Lunges performance predicted by multiple linear regression model with muscle architectural parameters. *Turkish Online Journal of Qualitative Inquiry*, 11(04), 2510–2517.
15. Kumar, A. (2022). Relationship between quadriceps muscle fiber architecture and lunges performance. *International Journal of Physiology, Nutrition and Physical Education*, 7(2), 347–351.
16. Kumar, A. (2023a). Muscle architecture a new dimension of talent identification: A mini review. *International Journal of Applied Research*, 9(1), 142–146.
17. Kumar, A. (2023b). Non-invasive estimation of muscle fiber type using ultrasonography. *International Journal of Physical Education, Sports and Health*, 10(1), 89–95.
18. Kumar, A., & Ajay, S. A. (2022). Muscle architecture: A new dimension of talent identification. In *Progressive Trends in Sports Training, Exercise and Yogic Sciences* (pp. 1–14).
19. Mikami, E., Fuku, N., Murakami, H., Tsuchie, H., Takahashi, H., Ohiwa, N., Tanaka, H., Pitsiladis, Y., Higuchi, M., Miyachi, M., Kawahara, T., & Tanaka, M. (2013). ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes. *International Journal of Sports Medicine*, 35(02), 172-177.
20. Nilipour, Y. (2019). The art of muscle biopsy in the new genetic era: A narrative review. *PubMed*, 13(4), 7-17.
21. Pette, D., & Peuker, H. (1999). The impact of biochemical methods for single muscle fibre analysis. *Acta Physiologica Scandinavica*, 166, 261–277.
22. Pette, D. (1997). Mammalian skeletal muscle fiber type transitions. *International Review of Cytology*, 170, 143–223.
23. Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schönenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: Shifting perspectives. *Sports*, 9(9), 127.
24. Scott, W., Stevens, J., & Binder-Macleod, S. A. (2001). Human skeletal muscle fiber type classifications. *Physical Therapy*, 81(11), 1810–1816.
25. Staron, R. S. (1997). Human skeletal muscle fiber types: delineation, development, and distribution. *Canadian Journal of Applied Physiology*, 22, 307–327.
26. Taylor, A. W., & Essén, B. (1974). Myosin ATPase in skeletal muscle of healthy men. *Acta Physiologica Scandinavica*, 91, 568–570.
27. Vincent, B., Bock, K. D., Ramaekers, M., Van den Eede, E., Leemputte, M. V., Hespel, P., & Thomis, M. (2007). ACTN3 (R577X) genotype is associated

with fiber type distribution. *Physiological Genomics*, 32(1), 58-63.

28. Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. *Experimental Cell Research*, 316(18), 3093-3099.

29. Wood, R. J. (2010). Complete guide to fitness testing. Topendsports.Com. Retrieved from <https://www.topendsports.com/testing/>

30. Yan, Z., Okutsu, M., Akhtar, Y., & Lira, V. A. (2011). Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. *Journal of Applied Physiology*, 110(1), 264-274.

31. Yvert, T., Miyamoto-Mikami, E., Tobina, T., Shiose, K., Kakigi, R., Tsuzuki, T., Takaragawa, M., Ichinoseki-Sekine, N., Pérez, M., Kobayashi, H., Tanaka, H., Naito, H., & Fuku, N. (2020). PPARGC1A rs8192678 and NRF1 rs6949152 polymorphisms are associated with muscle fiber composition in women. *Genes*, 11(9), 1012.